首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.  相似文献   

2.
Marine natural products display a wide range of biological activities, which play a vital role in the innovation of lead compounds for the drug development. Soft corals have been ranked at the top in regard to the discovery of bioactive metabolites with potential pharmaceutical applications. Many of the isolated cembranoids revealed diverse biological activities, such as anticancer, antidiabetic and anti‐osteoporosis. Likewise, sterols from soft corals exhibited interesting biological potential as anti‐inflammatory, antituberculosis and anticancer. Consequently, investigating marine soft corals will definitely lead to the discovery of a large number of chemically varied secondary metabolites with countless bioactivities for possible applications in medicine and pharmaceutical industry. This review provides a complete survey of all metabolites isolated from the family Nephtheidae, from 2011 until November 2018, along with their natural sources and biological potential whenever possible.  相似文献   

3.
Three new drimane sesquiterpenoids, astellolides C–E ( 1 – 3 , resp.), four new drimane sesquiterpenoid p‐hydroxybenzoates, astellolides F–I ( 4 – 7 , resp.), together with two known compounds astellolides A and B ( 8 and 9 , resp.), have been isolated from the liquid culture of Aspergillus oryzae (strain No. QXPC‐4). Their structures were established by comprehensive analysis of spectroscopic data. The relative and absolute configurations were determined on the basis of NOESY and CD data, together with single‐crystal X‐ray diffraction analyses of compounds 1 – 3 . The metabolites were evaluated for their cytotoxic activities, however, no compounds showed a significant cytotoxicity against the tested cell lines at a concentration of 20 μM .  相似文献   

4.
Data on the chemical structures and biologic activities of metabolites of obligate and facultative marine actinobacteria published between 2000 and 2007 are reviewed. The structural features of five groups of metabolites related to macrolides and compounds containing lactone, quinone, and diketopiperazine residues; cyclic peptides; alkaloids; and compounds of combined nature are discussed. The review shows the large chemical diversity of metabolites of actinobacteria isolated from marine ecotopes. In addition to metabolites identical to those previously isolated from terrestrial actinobacteria, marine actinobacteria produce compounds not found in other natural sources, including microorganisms. Probably, the biosynthesis of new chemotypes of bioactive compounds by marine actinobacteria is related to the chemical adaptation of microorganisms to the marine environment. The review emphasizes the importance of chemical studies of metabolites produced by marine actinobacteria. These studies will provide new data on marine microbial producers of biologically active compounds and the chemical structures and biologic activities of new natural lowmolecular-weight bioregulators.  相似文献   

5.
《Microbiological research》2014,169(4):262-278
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.  相似文献   

6.
Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinomycetes from terrestrial sources have been studied and screened since the 1950s, yielding many important anti-infective and anti-cancer drugs. However, frequent re-discovery of the same compounds in terrestrial actinomycetes have made them less attractive for screening programs in the recent years. At the same time, actinomycetes isolated from the marine environment currently receive considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. This review highlights achievements and challenges in the isolation of marine actinomycetes, some examples of bioactive metabolites identified by conventional screening, and presents new developments in the field of genome mining and heterologous expression of biosynthetic gene clusters leading to the discovery of novel compounds.  相似文献   

7.
Two new pyripyropenes, 13‐dehydroxy‐1,11‐deacetylpyripyropene A ( 1 ) and 1‐deacetylpyripyropene A ( 2 ), together with six known compounds, were isolated from a marine fungus Fusarium lateritium 2016F18‐1 which was associated with the sponge Phyllospongia foliascens. Their structures were established mainly based on NMR and MS data. Their cytotoxic activities against human cancer cells CNE1, CNE2, HONE1, SUNE1, GLC82, and HL7702 were evaluated.  相似文献   

8.
Two different series of novel β‐ketoamide curcumin analogs enriched in biological activities have been synthesized. The synthesized compounds were screened for their in vitro anti‐diabetic and AGEs inhibitory activities and exhibited potent to good anti‐diabetic and AGEs inhibitory activities. The molecular docking study was also performed with the α‐amylase enzyme.  相似文献   

9.
One new racemic mixture, penicilliode A ( 1 ) and four pairs of enantiomeric polyketides, penicilliode B and C ( 2 and 3 ) and coniochaetone B and C ( 4 and 5 ), were obtained from the starfish‐derived symbiotic fungus Penicillium sp. GGF16‐1‐2. Interestingly, the strain GGF16‐1‐2 can produce enantiomers. The absolute configuration of 1 was determined by X‐ray diffraction (XRD) analysis, and the absolute configurations of 2 – 4 were determined by the optical rotation (OR) values and electronic circular dichroism (ECD) calculations. Compounds 1 – 5 were firstly isolated from the marine‐derived fungus Penicillium as racemates, and 2 – 5 were separated by HPLC with a chiral stationary phase. All the compounds were evaluated for their antibacterial, cytotoxic and inhibitory activities against PDE4D2.  相似文献   

10.
Penicimutanin C, a new alkaloidal compound, was isolated from the neomycin‐resistant mutant strain 3‐f‐31 of the marine‐derived fungus, Penicillium purpurogenum G59, together with four known compounds. The structure of penicimutanin C, including the absolute configuration, was determined by spectroscopic and chemical methods. The absolute configuration of penicimutanin A was also re‐confirmed by Marfey's and chiral HPLC analyses of the hydrolyzed products. Penicimutanins C and A inhibited the proliferation of five human cancer cell lines to some extent. Penicimutanin C is the third dimer of diketopiperazine and penicimutanolone, which are only produced by mutants of P. purpurogenum G59 isolated to date, and it showed cytotoxic activity against human cancer cell lines. The neomycin‐resistant screening strategy has been previously successfully used to discover new compounds by activating silent metabolites in fungi, and the present results provide an additional example of the effectiveness of this method.  相似文献   

11.
Five new diketopiperazines, prenylcyclotryprostatin B ( 1 ), 20‐hydroxycyclotryprostatin B ( 2 ), 9‐hydroxyfumitremorgin C ( 3 ), 6‐hydroxytryprostatin B ( 4 ), and spirogliotoxin ( 5 ), were isolated from the marine‐derived fungus Aspergillus fumigatus YK‐7, along with nine known compounds, 6 – 14 . Their structures were elucidated by spectroscopic methods, and their antiproliferative effects on human leukemic monocyte lymphoma U937 and human prostate cancer PC‐3 cell lines were assessed in vitro. Compounds 10, 12 , and 13 exhibited significant cell growth‐inhibitory activities against U937 cell line, with the IC50 values of 1.8, 0.2, and 0.5 μM , respectively.  相似文献   

12.
Two new oleanane‐type triterpenes named ivorengenin A (=3‐oxo‐2α,19α,24‐trihydroxyolean‐12‐en‐28‐oic acid; 1 ) and ivorengenin B (=4‐oxo‐19α‐hydroxy‐3,24‐dinor‐2,4‐secoolean‐12‐ene‐2,28‐dioic acid; 2 ), together with five known compounds, arjungenin, arjunic acid, betulinic acid, sericic acid, and oleanolic acid, were isolated from the barks of Terminalia ivorensis A. Chev . (Combretaceae). Their structures were established on the basis of 1D‐ and 2D‐NMR data, and mass spectrometry. A biogenetic pathway to the formation of these compounds from sericic acid, isolated as the major compound from this plant, was proposed. The antioxidant activities of different compounds were investigated by means of the 2,2‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) and 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) assays, and IC50 values were calculated and compared with Trolox activity. Antiproliferative activities of the isolated compounds were also evaluated against MDA‐MB‐231, PC3, HCT116, and T98G human cancer cell lines, against which the compounds showed significant cytotoxic activities.  相似文献   

13.
Phytochemical investigation from the tube roots of Butea superba, led to the isolation and identification of a new 2‐aryl‐3‐benzofuranone named superbanone ( 1 ), one benzoin, 2‐hydroxy‐1‐(2‐hydroxy‐4‐methoxyphenyl)‐2‐(4‐methoxyphenyl)ethanone ( 2 ), eight pterocarpans ( 3  –  10 ), and eleven isoflavonoids ( 11  –  21 ). Compound 2 was identified for the first time as a natural product. The structure of the isolated compounds was elucidated using spectroscopic methods, mainly 1D‐ and 2D‐NMR. The isolated compounds and their derivatives were evaluated for α‐glucosidase inhibitory and antimalarial activities. Compounds 3 , 7 , 8 , and 11 showed promising α‐glucosidase inhibitory activity (IC50 = 13.71 ± 0.54, 23.54 ± 0.75, 28.83 ± 1.02, and 12.35 ± 0.36 μm , respectively). Compounds 3 and 11 were twofold less active than the standard drug acarbose (IC50 = 6.54 ± 0.04 μm ). None of the tested compounds was found to be active against Plasmodium falciparum strain 94. On the basis of biological activity results, structure–activity relationships are discussed.  相似文献   

14.
Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.  相似文献   

15.
Although comparatively little research has been undertaken into the secondary metabolites of bryozoans as compared with those of other marine invertebrates, bryozoans have proven to be an excellent source of novel and/or biologically active compounds. The majority of bryozoan metabolites isolated to date have been alkaloids. In our continuing search for bioactive and/or novel compounds from New Zealand marine bryozoans, we undertook an investigation of an extract of Pterocella vesiculosa (order Cheilostomatida, suborder Ascophorina, family Catenicellidae) which possessed activity against P388 murine leukaemia cells. Two alkaloids, pterocellins A–B (1–2) have been isolated from the bryozoan. The biological activity of these alkaloids was examined including their activities in the in vitro 60 cell line panel and in vivo hollow fibre assays at the National Cancer Institute (NCI). The isolation and characterisation of further pterocellin analogues is currently in progress and tentative structures for two new members of this series, pterocellins C–D (3–4) are proposed, based on NMR and mass spectral data.  相似文献   

16.
Recent studies on bioactive metabolites from marine macro- and microorganisms are reviewed with 83 refs. Structures of new sulphated and glycosylated secondary metabolites, which have been reported to have antifungal, immunomodulatory, and cytotoxic properties, are given. Some peculiarities of biosynthesis of natural compounds in marine organisms are revealed. It was shown that some natural products, isolated earlier from sponges, are produced by microbial symbionts. Different physiological activities associated with 8000 marine microbial (mainly symbiotic) strains are discussed as well as some prospects of marine biochemistry and biotechnology development.  相似文献   

17.
Coussarea macrophylla (Mart .) Müll.Arg . (Rubiaceae) was collected in Ecuador, and the bark was extracted with AcOEt. Chromatographic separation afforded six novel 3,4‐secocycloartane and 3,4‐secodammarane triterpenes, named macrocoussaric acids A–F, together with the known metabolites secaubryenol and 3,4‐secodammara‐4(28),20,24‐triene‐3,26‐dioic acid. The structures of the new compounds were determined on the basis of their spectroscopic data. This is the first report of 3,4‐secocycloartane and 3,4‐secodammarane triterpenes occurring in a Coussarea species. Macrocoussaric acids A and B ( 2 and 3 , resp.) were found to be moderately cytotoxic against five different tumor cell lines.  相似文献   

18.

The genus Phoma contains several species ubiquitously present in soil, water, and environment. There are two major groups of Phoma, viz., terrestrial and marine. After 1981 researchers all over the world have focused on marine-derived Phoma for their bioactive compounds. The marine Phoma are very rich sources for novel bioactive secondary metabolites, which could potentially be used as drugs. Recently, a large number of structurally unique metabolites with potential biological and pharmacological activities have been isolated from the marine Phoma species particularly Phoma herbarum, P. sorghina, and P. tropica. These metabolites mainly include diterpenes, enolides, lactones, quinine, phthalate, and anthraquinone. Most of these compounds possess antimicrobial, anticancer, radical scavenging, and cytotoxic properties. The present review has been focused on the general background of Phoma, current approaches used for its identification and their limitations, difference between terrestrial and marine Phoma species. In addition, this review summarizes the novel bioactive compounds derived from marine Phoma and their biological activities.

  相似文献   

19.
The antioxidant properties of two series of thiazolidinones and thiazinanones were reported. The novel six‐membered thiazinanones were synthesized from the efficient multicomponent reaction of 2‐picolylamine (2‐aminomethylpyridine), arenaldehydes, and the 3‐mercaptopropionic acid in moderate to excellent yields. These novel compounds were fully identified and characterized by NMR and GC‐MS techniques. In vitro antioxidant activities of all compounds were evaluated by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2′‐azinobis‐3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS) tests. The antioxidant assays of thiobarbituric acid reactive species and total thiol content levels in the cerebral cortex and liver of rats were also performed. Thiazinanone 5a showed the best radical scavenging activity in DPPH and ABTS tests, as well as reduced lipid peroxidation and increased total thiol group in biological systems. Altogether, the results may be considered a good starting point for the discovery of a new radical scavenger.  相似文献   

20.
Aims: A sterile red fungus (SRF) isolated from cortices of roots of both wheat (Triticum aestivum cv. Gamenya) and ryegrass (Lolium rigidum cv. Wimmera) was found to protect the hosts from phytopathogens and promote plant growth. In this work, the major secondary metabolites produced by this SRF were analysed, and their antibiotic and plant‐growth‐promoting activities investigated. Methods and Results: Two main compounds, veratryl alcohol (VA) and 4‐(hydroxymethyl)‐quinoline, were isolated from the culture filtrate of the fungus. In antifungal assays, VA inhibited the growth of Sclerotinia sclerotiorum and Pythium irregulare even at low amounts, while high concentrations (>100 μg per plug) of 4‐(hydroxymethyl)‐quinoline were needed. Both metabolites revealed weak inhibition of Rhizoctonia solani. Furthermore, both compounds showed a growth promotion activity on canola (Brassica napus) seedlings used as bioassays. Conclusions: Isolation and characterization of the main secondary metabolites from culture filtrates of a root‐inhabiting sterile fungus are reported. The biological assays indicate that these secondary metabolites may have a role in both plant growth regulation and antifungal activity. Significance and Impact of the Study: This study provides a better understanding of the metabolism of a cortical fungus that may have a useful role in the biological suppression of root‐infecting soil‐borne plant pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号