首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Biological data,represented by the data from omics platforms,are accumulating exponentially.As some other data-intensive scientific disciplines such as high-energy physics,climatology,meteorology,geology,geography and environmental sciences,modern life sciences have entered the information-rich era,the era of the 4th paradigm.The creation of Chinese information engineering infrastructure for pan-omics studies(CIEIPOS) has been long overdue as part of national scientific infrastructure,in accelerating the further development of Chinese life sciences,and translating rich data into knowledge and medical applications.By gathering facts of current status of international and Chinese bioinformatics communities in collecting,managing and utilizing biological data,the essay stresses the significance and urgency to create a ’data hub’ in CIEIPOS,discusses challenges and possible solutions to integrate,query and visualize these data.Another important component of CIEIPOS,which is not part of traditional biological data centers such as NCBI and EBI,is omics informatics.Mass spectroscopy platform was taken as an example to illustrate the complexity of omics informatics.Its heavy dependency on computational power is highlighted.The demand for such power in omics studies is argued as the fundamental function to meet for CIEIPOS.Implementation outlook of CIEIPOS in hardware and network is discussed.  相似文献   

2.
Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed 'omics' technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A 'system' approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with 'system approaches' in animal sciences, providing exciting opportunities to predict and modulate animal traits.  相似文献   

3.
Exobiology is a relatively new field of sciences, which was established in connection with the development of the space technology, expanding the range of biological studies beyond the Earth. The major task of exobiology is the study of processes that give rise to the life, biological evolution, and distribution of living creatures in the universe. The term exobiology was introduced by the Dutch researcher Lederberg (1960). During fifty years of progressive development, it turned into a wide interdisciplinary field of sciences, including a number of disciplines, such as astrophysics, organic and analytical chemistry, geology, geochemistry, and other planet sciences not to mention various biological disciplines. Exobiology has become an inherent part of national and international space programs (Carle et al., 1992; Morrison, 2001).  相似文献   

4.
传统的基因组编辑技术是基于胚胎干细胞和同源重组实现生物基因组定向改造,但是该技术打靶效率低,严重制约了生命科学以及医学的研究.因此,研究新的基因组编辑技术十分重要.人工核酸酶介导的基因组编辑技术是通过特异性识别靶位点造成DNA双链断裂,引起细胞内源性的修复机制实现靶基因的修饰.与传统的基因组编辑技术相比,人工核酸酶技术打靶效率高,这对于基因功能的研究、构建人类疾病动物模型以及探索新型疾病治疗方案有着重要的意义.人工核酸酶技术有3种类型:锌指核酸酶(ZFN)、类转录激活因子核酸酶(TALEN)及规律成簇的间隔短回文重复序列(CRISPR).本文将对以上3种人工核酸酶技术的原理以及在生命科学和医学研究的应用进行综述.  相似文献   

5.
Database infrastructure has become a critical component for competitive life sciences research and discovery. The explosion of data requires that the data are properly loaded, accessed, managed, queried, analyzed, and shared with others. The key purpose of the population-based twin cohorts housed at different institutions in Europe is to gather an extremely large quantity of information from their twin populations, and share it. Longitudinal research over a long period of time, hopefully generations, demands completely new methods and systems to handle the gathering of information and storing. These cohorts bring to the fore problems concerning the need for a standardization of research data and a computer and storage strategy. In the following we describe the preliminary strategy being implemented in the Database Core of GenomEUtwin.  相似文献   

6.
In this age of data‐driven science and high‐throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long‐standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373–389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context‐specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade‐offs that are not obvious to the uninitiated.  相似文献   

7.
The knowledge gleaned from genome sequencing and post-genome analyses is having a very significant impact on a whole range of life sciences and their applications. 'Genome-wide analysis' is a good keyword to represent this tendency. Thanks to innovations in high-throughput measurement technologies and information technologies, genome-wide analysis is becoming available in a broad range of research fields from DNA sequences, gene and protein expressions, protein structures and interactions, to pathways or networks analysis. In fact, the number of research targets has increased by more than two orders in recent years and we should change drastically the attitude to research activities. The scope and speed of research activities are expanding and the field of bioinformatics is playing an important role. In parallel with the data-driven research approach that focuses on speedy handling and analyzing of the huge amount of data, a new approach is gradually gaining power. This is a 'model-driven research' approach, that incorporates biological modeling in its research framework. Computational simulations of biological processes play a pivotal role. By modeling and simulating, this approach aims at predicting and even designing the dynamic behaviors of complex biological systems, which is expected to make rapid progress in life science researches and lead to meaningful applications to various fields such as health care, food supply and improvement of environment. Genomic sciences are now advancing as great frontiers of research and applications in the 21st century.This article starts with surveying the general progress of bioinformatics (Section 1), and describes Japanese activities in bioinformatics (Section 2). In Section 3, I will introduce recent developments in Systems Biology which I think will become more important in the future.  相似文献   

8.
The term "dual-use" traditionally has been used to describe technologies that could have both civilian and military usage, but this term has at least three different dimensions that pose a dilemma for modern biology and its possible misuse for hostile purposes: (1) ostensibly civilian facilities that are in fact intended for military or terrorist bioweapons development and production; (2) equipment and agents that could be misappropriated and misused for biological weapons development and production; and (3) the generation and dissemination of scientific knowledge that could be misapplied for biological weapons development and production. These three different aspects of the "dual-use dilemma" are frequently confused--each demands a distinct approach within a "web of prevention" in order to reduce the future risk of bioterrorism and biowarfare. This article discusses the nature of the different perspectives and divergent approaches as a contribution to finding a scientifically acceptable global solution to the problem posed by the dual-use dilemma. We propose that: (1) facilities that are intended for bioweapons development and production should be primarily prevented by a strengthened Biological and Toxin Weapons Convention (BTWC) effectively implemented in all nation states, one that includes provisions for adequate transparency to improve confidence and a mechanism for thorough inspections when there is sufficient cause, and enhanced law enforcement activities involving international cooperation and sharing of critical intelligence information; (2) potentially dual-use equipment and agents should be available to legitimate users for peaceful purposes, but strengthened national biosafety and physical and personnel biosecurity controls in all nations together with effective export controls should be implemented to limit the potential for the misappropriation of such equipment and materials; and (3) information should be openly accessible by the global scientific community, but a culture of responsible conduct involving the breadth of the international life sciences communities should be adopted to protect the ongoing revolution in the life sciences from being hijacked for hostile misuse of the knowledge generated and communicated by life scientists.  相似文献   

9.
The development of digital technologies in all activities sectors of our society leads to a growing number of digital documents. A significant part of these documents needs to be durably preserved. This long term preservation has to face the short life expectancy of the technologies and the digital storage media. Large national organizations have already take this problem into account and set up teams, skills and means to face this challenge. At the opposite, the small structures, doctor's offices, individuals, students, etc. are not generally aware of the problem or are stripped to face there. A certain number of simple actions, not requiring specific skills in data processing can nevertheless be undertaken. Without important expenditure, they increase to a significant degree, the security level of the documents over the long term.  相似文献   

10.
The Editor‐in‐Chief reflects on a life in biological sciences that has been rewarding through the sheer diversity of interesting phenomenon he has researched, and recalls how holistic thinking had sadly been replaced by rampant reductionism.  相似文献   

11.
New ‘omics’ technologies are changing nutritional sciences research. They enable to tackle increasingly complex questions but also increase the need for collaboration between research groups. An important challenge for successful collaboration is the management and structured exchange of information that accompanies data-intense technologies. NuGO, the European Nutrigenomics Organization, the major collaborating network in molecular nutritional sciences, is supporting the application of modern information technologies in this area. We have developed and implemented a concept for data management and computing infrastructure that supports collaboration between nutrigenomics researchers. The system fills the gap between “private” storing with occasional file sharing by email and the use of centralized databases. It provides flexible tools to share data, also during experiments, while preserving ownership. The NuGO Information Network is a decentral, distributed system for data exchange based on standard web technology. Secure access to data, maintained by the individual researcher, is enabled by web services based on the the BioMoby framework. A central directory provides information about available web services. The flexibility of the infrastructure allows a wide variety of services for data processing and integration by combining several web services, including public services. Therefore, this integrated information system is suited for other research collaborations.  相似文献   

12.
An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.  相似文献   

13.
植物化学遗传学:一种崭新的植物遗传学研究方法   总被引:1,自引:0,他引:1  
化学遗传学(chemical genetics,也称为化学基因组学,chemical genomics)研究方法是利用生物活性小分子扰动蛋白分子互作过程来研究有关的生命现象,是常规遗传学研究方法的补充和延伸。化学遗传学在植物科学中的应用——植物化学遗传学的研究在短短几年内,凭借其作为一种新的遗传学研究方法所具备的独特优势(如能够克服常规遗传学研究中的遗传冗余、突变致死难题及可提供特异强度、作用时间点上的条件性遗传扰动等),已开始解决一些植物分子生物学中长期存在的研究难题。本文就植物化学遗传学的一般原理及其方法,以及它作为一种新的遗传学研究方法的优势及特点作一个综述.  相似文献   

14.
The term 'cell', in addition to designating fundamental units of life, has also been applied since the nineteenth century to technical apparatuses such as fuel and galvanic cells. This paper shows that such technologies, based on the electrical effects of chemical reactions taking place in containers, had a far-reaching impact on the concept of the biological cell. My argument revolves around the controversy over oxidative phosphorylation in bioenergetics between 1961 and 1977. In this scientific conflict, a two-level mingling of technological culture, physical chemistry and biological research can be observed. First, Peter Mitchell explained the chemiosmotic hypothesis of energy generation by representing cellular membrane processes via an analogy to fuel cells. Second, in the associated experimental scrutiny of membranes, material cell models were devised that reassembled spatialized molecular processes in vitro. Cells were thus modelled both on paper and in the test tube not as morphological structures but as compartments able to perform physicochemical work. The story of cells and membranes in bioenergetics points out the role that theories and practices in physical chemistry had in the molecularization of life. These approaches model the cell as a 'topology of molecular action', as I will call it, and it involves concepts of spaces, surfaces and movements. They epitomize an engineer's vision of the organism that has influenced diverse fields in today's life sciences.  相似文献   

15.
Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long‐term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species‐specific life‐history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long‐term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.  相似文献   

16.
自基因测序技术发明之时起,就已开始运用在生命科学的研究中,对揭示生命本质的研究起到了关键作用。基因测序技术的运用推动了生命科学的发展,并由此引申了更多的科学问题;人们对未知领域的渴求又推动了基因测序技术的进步,发展出更高速、更低价的新技术。随着测序技术的逐步应用,临床个体化用药的水平有了极大的提高。基因测序技术目前已经成功应用于遗传基因多态性标志物的筛选中,使基因导向的合理用药成为可能;还成功应用于疾病组织突变位点标志物的筛查中,使肿瘤靶向用药成为可能;在病原体耐药基因突变检测中的应用,使基于细菌或病毒耐药突变的个体化用药成为可能。随着测序技术向更高通量、更高精度、更低成本的方向发展,基于基因检测的个体化健康时代将会到来。  相似文献   

17.
In life sciences, modelling of the in vivo conditions using in vitro models is an important tool to generate knowledge. Although aerobic organisms including mammals depend on accurate oxygen tension, mimicking physiological conditions in cell culture experiments is not very common. Due to the need for simple technical and experimental design, the requirement for simulating the in vivo oxygen tension parameters has been neglected over long time. Fortunately, due to increasing knowledge in recent years the attention has shifted towards this scientific demand. In this short review, we summarize data substantiating the necessity to adequately mimic physiological oxygen tension using cell culture models in life science research. J. Cell. Physiol. 226: 315–321, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale consortia projects, biological systems are being further investigated at an unprecedented scale generating heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration methodologies. In this introduction we review the definition and characterize current efforts on data integration in the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the views, needs and challenges as currently perceived by parts of the research community.  相似文献   

19.
In the past decade, research on long‐term persistence of phytoplankton resting stages has intensified. Simultaneously, insight into life‐cycle variability in the diverse groups of phytoplankton has also increased. Aquatic ‘seed banks’ have tremendous significance and show many interesting parallels to terrestrial seed beds of vascular plants, but are much less studied. It is therefore timely to review the phenomenon of long‐term persistence of aquatic resting stages in sediment seed banks. Herein we compare function, morphology and physiology of phytoplankton resting stages to factors central for persistence of terrestrial seeds. We review the types of resting stages found in different groups of phytoplankton and focus on the groups for which long‐term (multi‐decadal) persistence has been shown: dinoflagellates, diatoms, green algae and cyanobacteria. We discuss the metabolism of long‐term dormancy in phytoplankton resting stages and the ecological, evolutionary and management implications of this important trait. Phytoplankton resting stages exhibiting long‐term viability are characterized by thick, often multi‐layered walls and accumulation vesicles containing starch, lipids or other materials such as pigments, cyanophycin or unidentified granular materials. They are reported to play central roles in evolutionary resilience and survival of catastrophic events. Promising areas for future research include the role of hormones in mediating dormancy, elucidating the mechanisms behind metabolic shut‐down and testing bet‐hedging hypotheses.  相似文献   

20.
长非编码RNA研究进展   总被引:2,自引:0,他引:2  
长非编码RNA是指一类长度大于200个核苷酸、不编码蛋白质的非编码RNA.越来越多的研究表明,人类基因组中高达90%的非编码蛋白质的区段同样具有重要作用,而不是所谓的"转录噪声".针对长非编码RNA的功能研究表明,其在转录起始的调控、转录及转录后的调控中均发挥着重要作用,因而影响着各种各样的生物学过程.本综述围绕近几年长非编码RNA的研究成果,总结了长非编码RNA的起源与进化、新型的长非编码RNA类型、典型的长非编码RNA作用机制以及长非编码RNA在发育与细胞重编程过程中的研究,同时也概述了长非编码RNA与表观遗传调控和癌症的关系以及长非编码RNA研究的相关技术.系统发现长非编码RNA并阐明其功能机制,将对现代生命科学具有重大的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号