首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, we prepared carbon dots (CDs) from wheat bran via hydrothermal treatment at 180°C for 3 h. The prepared CDs showed blue‐green fluorescence under UV light. The fluorescence emission study of the CDs revealed that they showed maximum fluorescence emission at 500 nm. The prepared CDs showed a high quantum yield of 33.23%. Solvent‐dependent fluorescence emission analysis of the CDs was performed to study the variation in fluorescence emission characteristics with solvent polarity. The prepared CDs were conjugated with amoxicillin (AMX) to explore its potential for use as a drug delivery agent for AMX. The drug release profile of the CD–AMX conjugates was analyzed at different pH (5.0, 6.8 and 7.2) to study drug release kinetics. CD–AMX conjugates showed notable bacterial inhibition against Gram‐positive (S. aureus) and Gram‐negative (E. coli) strains with minimal cytotoxic effects, indicating its potential as a promising antibacterial drug delivery system.  相似文献   

3.
Shanji Li 《Luminescence》2012,27(3):242-245
A new Eu(III) complex, Eu(III)(DBM)3BIOQ, has been synthesized with dibenzoylmethane (DBM) as the first ligand and 2‐(benzimidazol‐2‐yl)‐8‐octyloxyquinoline (BIOQ) as the second ligand. The stability of the complex was analysed by DSC–TG. The results show that the Eu(III) complex has a relatively high thermal stability with a melting point of 235 °C and a decomposition temperature (onset) of 252 °C. The fluorescence properties of the compound were also investigated. The fluorescence results reveal that the as‐prepared complex shows the characteristic maximum emission spectra of Eu(III) at 611 nm (λex = 350 nm). In addition, the photoluminescence spectrum of the complex in the solid state exhibits a single and symmetrical emission band at 611 nm, with a full width at half‐maximum of 4.7 nm, showing high colour purity. This finding indicates the possibility for the development of brighter red luminescent materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

5.
The equilibrium unfolding of pig kidney aminoacylase in guanidinium chloride (GdmCl) solutions was studied by following the fluorescence and circular dichroism (CD). At low concentrations of GdmCl, less than 1.0 M, the fluorescence intensity decreased with a slight red shift of the emission maximum (from 335 to 340 nm). An unfolding intermediate was observed in low concentrations of denaturant (between 1.2 and 1.6 M GdmCl). This intermediate was characterized by a decreased fluorescence emission intensity, a red-shifted emission maximum, and increased binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate. No significant changes of the secondary structure were indicated by CD measurement. This conformation state is similar to a molten globule state which may exist in the pathway of protein folding. Further changes in the fluorescence properties occurred at higher concentrations of GdmCl, more than 1.6 M, with a decrease in emission intensity and a significant red shift of the emission maximum from 340 to 354 nm. In this stage, the secondary structure was completely broken. A study of apo-enzyme (Zn2+-free enzyme) produced similar results. However, comparison of the changes of the fluorescence emission spectra of native (Holo-) enzyme with Zn2+-free (Apo-) enzyme at low GdmCl concentrations showed that the structure of the Holo-enzyme was more stable than that of the Apo-enzyme.  相似文献   

6.
A simple microwave‐assisted solvothermal method was used to prepare fluorescent nitrogen‐doped carbon dots (N‐CDs) with high fluorescence quantum yield (79.63%) using citric acid and N‐(2‐hydroxyethyl)ethylenediamine as starting materials. The PVAm‐g‐N‐CDs grafted products were synthesized by amide bond formation between the carboxylic groups of N‐CDs and amine groups of polyvinylamine (PVAm). Fluorescent hydrogel films (PVAm‐g‐N‐CDs/PAM) were synthesized by interpenetration polymer network polymerization of PVAm‐g‐N‐CDs and acrylamide (AM). When used for ion detection, we found that the fluorescence of the hydrogel films was clearly quenched by addition of Hg2+. Repeatability tests on using the hydrogel films for Hg2+ detection showed that they could be applied at least three times. The PVAm‐g‐N‐CDs/PAM could serve as an effective fluorescent sensing platform for sensitive detection of Hg2+ ions with a detection limit of 0.089 μmol/L. This work may offer a new approach for developing recoverable and sensitive N‐CDs‐based sensors for biological and environmental applications.  相似文献   

7.
Polymer dots (PDs) showing concentration‐mediated multicolor fluorescence were first prepared from sulfuric acid‐treated dehydration of Pluronic® F‐127 in a single step. Pluronic‐based PDs (P‐PDs) showed high dispersion stability in solvent media and exhibited a fluorescence emission that was widely tunable from red to blue by adjusting both the excitation wavelengths and the P‐PD concentration in an aqueous solution. This unique fluorescence behavior of P‐PDs might be a result of cross‐talk in the fluorophores of the poly(propylene glycol)‐rich core inside the P‐PD through either energy transfer or charge transfer. Reconstruction of the surface energy traps of the P‐PDs mediated through aggregation may lead to a new generation of carbon‐based nanomaterials possessing a fluorescence emission and tunable by adjusting the concentration. These structures may be useful in the design of multifunctional carbon nanomaterials with tunable emission properties according to a variety of internal or external stimuli. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this research, for the first time, a dedicated sensor was designed to detect Hg+ ions using photoluminescent carbon dots (CDs). Due to the preferred green synthesis of CDs from bio-resources, carbohydrate-rich faba bean seeds as a potential carbon precursor were applied to the synthesis of CDs. The CDs were prepared from the faba bean seeds using the hydrothermal method in an aqueous solution in the absence of substances such as an acid or base and any other additives. The synthesized CDs exhibited maximum emission intensity at 387 nm when excited at 310 nm and their luminescence quantum yield was calculated to be ~5.94%. Then, the fluorescence emission of CDs was examined in the presence of different metal ions. Results revealed that the CDs had good selectivity towards the Hg+ ions, so the fluorescence emission was significantly changed in the presence of these ions with a limit of detection (LOD) as low as 0.35 μM. Furthermore, because of their very low cytotoxicity, these CDs can be applied for cell imaging.  相似文献   

9.
Spectrofluorometric studies of the lipid probe, nile red   总被引:18,自引:0,他引:18  
We found that the dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, can be applied as a fluorescent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry (J. Cell. Biol. 1985. 100: 965-973). To understand the selectivity of the staining, we examined the fluorescence properties of nile red in the presence of organic solvents and model lipid systems. Nile red was found to be both very soluble and strongly fluorescent in organic solvents. The excitation and emission spectra of nile red shifted to shorter wavelengths with decreasing solvent polarity. However, the fluorescence of nile red was quenched in aqueous medium. Nile red was observed to fluoresce intensely in the presence of aqueous suspensions of phosphatidylcholine vesicles (excitation maximum: 549 nm; emission maximum: 628 nm). When neutral lipids such as triacylglycerols or cholesteryl esters were incorporated with phosphatidylcholine to form microemulsions, nile red fluorescence emission maxima shifted to shorter wavelengths. Serum lipoproteins also induced nile red fluorescence and produced spectral blue shifts. Nile red fluorescence was not observed in the presence of either immunoglobulin G or gelatin. These results demonstrate that nile red fluorescence accompanied by a spectral blue shift reflects the presence of nile red in a hydrophobic lipid environment and account for the selective detection of neutral lipid by the dye. Nile red thus serves as an excellent fluorescent lipid probe.  相似文献   

10.
Water‐soluble carbon dots (CDs) were synthesized using a one‐step hydrothermal treatment of chloroplast dispersions extracted from fresh leaves as a green carbon source. The CD solution showed an emission peak centred at 445 nm when excited at 300 nm. The synthesized CDs were uniform and monodispersed with an average size of 5.6 nm. When adding ferric(III) ions (Fe3+) to the solution of the original CDs, the fluorescence intensity decreased significantly. Based on the linear relationship between fluorescence intensity and concentration of Fe3+ ions, an effective method for rapid, sensitive and selective Fe3+ sensing in aqueous solution could be established. Under optimum conditions, the extent of the fluorescence quenching of prepared CDs strongly depended on the Fe3+ ions over a wide concentration range 1.0–100.0 μM with a detection limit (3σ/k) of 0.3 μM. Furthermore, the quantitative determination of Fe3+ ions in environmental water samples was realized.  相似文献   

11.
The wild type red fluorescent protein eqFP578 (from sea anemone Entacmaea quadricolor, λex = 552 nm, λem = 578 nm) and its bright far‐red fluorescent variant Katushka (λex = 588 nm, λem = 635 nm) are characterized by the pronounced pH dependence of their fluorescence. The crystal structures of eqFP578f (eqFP578 with two point mutations improving the protein folding) and Katushka have been determined at the resolution ranging from 1.15 to 1.85 Å at two pH values, corresponding to low and high level of fluorescence. The observed extinguishing of fluorescence upon reducing pH in eqFP578f and Katushka has been shown to be accompanied by the opposite transcis and cis‐trans chromophore isomerization, respectively. Asn143, Ser158, His197 and Ser143, Leu174, and Arg197 have been shown to stabilize the respective trans and cis fluorescent states of the chromophores in eqFP578f and Katushka at higher pH. The cis state has been suggested as being primarily responsible for the observed far‐red shift of the emission maximum of Katushka relative to that of eqFP578f.  相似文献   

12.
Lead halide perovskite quantum dots (QDs) with high fluorescence efficiency and high color purity have a broad application prospect in the field of backlight display, but poor stability has been a key factor limiting their commercialization. Herein, we successfully synthesized CsPbBr3 QDs-KIT-6 (CsPbBr3-K6) composite by using KIT-6 molecular sieve as the limited template with a simple high temperature solid-phase method. Further, the semi-protected CsPbBr3 QDs in KIT-6 frame will spontaneously hydrolyze when encountering water, and finally the double-encapsulated CsPbBr3 QDs-KIT-6@PbBr(OH) (CsPbBr3-K6@PbBr(OH)) composite are obtained. CsPbBr3-K6@PbBr(OH) composite shows excellent green emission properties, including a photoluminescence quantum yield (PLQY) (~73%) and a narrow emission linewidth of 25 nm. It is interesting that, the composite has excellent stability, including water stability without attenuation of fluorescence intensity after soaking in water for 60 days, thermal stability of 120°C heating–cooling cycle, and excellent optical stability without attenuation under continuous ultraviolet irradiation.  相似文献   

13.
Cyanobacteriochromes (CBCRs) are linear tetrapyrrole bilin-binding photoreceptors of cyanobacteria that exhibit high spectral diversity, gaining attention in optogenetics and bioimaging applications. Several engineering studies on CBCRs were attempted, especially for designing near-infrared (NIR) fluorescent proteins with longer fluorescence wavelengths. However, despite continuous efforts, a key component regulating fluorescence emission property in CBCRs is still poorly understood. As a model system, we focused on red/green CBCR Slr1393g3, from the unicellular cyanobacterium Synechocystis sp. PCC 6803 to engineer Pr to get far-red light-emitting property. Energy profiling and pairwise structural comparison of Slr1393g3 variants effectively reveal the mutations that are critical to the fluorescence changes. H497 seems to play a key role in stabilizing the chromophore environment, especially the α3 helix, while H495, T499, and Q502 are potential key residues determining fluorescence emission peak wavelength. We also found that mutations of α2 and α4 helical regions are closely related to the chromophore binding stability and likely affect fluorescence properties. Taken together, our computational analysis suggests that the fluorescence of Slr1393g3 is mainly controlled by the stabilization of the chromophore binding pocket. The predicted key residues potentially regulating the fluorescence emission property of a red/green CBCR will be advantageous for designing improved NIR fluorescent protein when combined with in vitro molecular evolution approaches.  相似文献   

14.
We developed a facile strategy for the fabrication of red fluorescent carbon nanodots (R-CDs) and demonstrated their applications for Al3+ sensing. Red-emission carbon dots (CDs) were synthesized using a simple hydrothermal treatment with citric acid and urea as precursors, manifesting intriguing red-emission behaviour at 610 nm. With increasing Al3+ concentration, the fluorescence band at 610 nm decreased gradually. Monitoring the intrinsic fluorescence variation (I610nm), as-prepared CDs were developed as an effective platform for fluorescent Al3+ sensing, with a linear range of 0.5–60.0 μM and a detection limit of 3.0 nM. More importantly, R-CDs have been applied successfully to the analysis of Al3+ in actual samples with satisfactory recoveries in the range 97.12–102.05%, which indicated that obtained CDs could be implemented as an effective tool for the identification and detection of Al3+ in actual samples.  相似文献   

15.
Eu‐doped ZnSe:/ZnS quantum dots (formed as ZnSe:Eu/ZnS QDs) were successfully synthesized by a two‐step wet chemical method: nucleation doping and epitaxial shell growing. The sensitization characteristics of Eu‐doped ZnSe and ZnSe/ZnS core/shell QD are studied in detail using photoluminescence (PL), PL excitation spectra (PLE) and time‐resolved PL spectroscopy. The emission intensity of Eu ions is enhanced and that of ZnSe QDs is decreased, implying that energy was transferred from the excited ZnSe host materials (the donor) to the doped Eu ions (the acceptor). PLE reveals that the ZnSe QDs act as an antenna for the sensitization of Eu ions through an energy transfer process. The dynamics of ZnSe:Eu/ZnS core/shell quantum dots with different shell thicknesses and doping concentrations are studied via PL spectra and fluorescence lifetime spectra. The maximum phosphorescence efficiency is obtained when the doping concentration of Eu is approximately 6% and the sample showed strong white light under ultraviolet lamp illumination. By surface modification with ZnS shell layer, the intensity of Eu‐related PL emission is increased approximately three times compared with that of pure ZnSe:Eu QDs. The emission intensity and wavelength of ZnSe:Eu/ZnS core/shell quantum dots can be modulated by different shell thickness and doping concentration. The results provide a valuable insight into the doping control for practical applications in laser, light‐emitting diodes and in the field of biotechnology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Here, we have presented a green and facile strategy to fabricate nitrogen‐doped carbon dots (N‐CDs) and their applications for determination of chlortetracycline (CTC) and sulfasalazine (SSZ). The fluorescent N‐CDs, prepared by one‐step hydrothermal reaction of citric acid and l ‐arginine, manifested numerous excellent features containing strong blue fluorescence, good water‐solubility, narrow size distribution, and a high fluorescence quantum yield (QY) of 38.8%. Based on the fluorescence quenching effects, the as‐synthesized N‐CDs as a fluorescent nanosensor exhibited superior analytical performances for quantifying CTC and SSZ. The linear range for CTC was calculated to be from 0.85 to 20.38 μg ml?1 with a low detection limit of 0.078 μg ml?1. Meanwhile, the linear range for SSZ was estimated to be from 0.34 to 6.76 μg ml?1 with a low detection limit of 0.032 μg ml?1. Therefore, the N‐CDs hold admirable application potential for constructing a fluorescent sensor for pharmaceutical analysis.  相似文献   

17.
Three novel heteroleptic Zn(II) complexes containing 8‐hydroxy quinoline and various pyrazolone‐based derivatives were synthesized and their structures confirmed by 1H–nuclear magnetic resonance, mass spectrometry, Fourier transform infra‐red spectroscopy, UV–vis analysis and element analysis. All three complexes showed good photoluminescence properties in the solid state and in solution in the maximum emission range from 475 to 490 nm with a quantum yield of 0.45 to 0.51. Absorption spectra revealed that the complexes possessed a maximum absorption range of 272–281 nm with a band gap of 2.59–2.68 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital of all the complexes were determine by cyclic voltammetry. All complexes displayed high thermal stability. These characteristics were assessed to find suitability for an alternative cheap light emitter for organic light‐emitting diodes.  相似文献   

18.
This paper reports the synthesis and characterization of 2‐(4‐ethoxyphenyl)‐4‐phenyl quinoline (OEt‐DPQ) organic phosphor using an acid‐catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt‐DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra‐red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X‐rays (EDAX). The thermal stability and melting point of OEt‐DPQ and thin films were probed by thermo‐gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV–visible optical absorption spectra of OEt‐DPQ in the solid state and blended films produced absorption bands in the range 260–340 nm, while photoluminescence (PL) spectra of OEt‐DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363–369 nm. However, solvated OEt‐DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31–43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (Eg), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E0) and oscillator strength (f), quantum yield (φf), oscillator energy (E0), dispersion energy (Ed), Commission Internationale de l'Éclairage (CIE) co‐ordinates and energy yield fluorescence (EF) were calculated to assess the phosphor's suitability as a blue emissive material for opto‐electronic applications such as organic light‐emitting diodes (OLEDs), flexible displays and solid‐state lighting technology.  相似文献   

19.
The fluorescence properties of one chemically and seven biologically produced polyhydroxyalkanoic acids were investigated as film castings and in living cells respectively after staining with Nile red. All these polyesters show a similar fluorescence behaviour, revealing a clear fluorescence maximum at an excitation wavelength between 540 nm and 560 nm and an emission wavelength between 570 nm and 605 nm. This could be shown by the use of two-dimensional fluorescence spectroscopy and flow cytometry. The examination of native poly(3-hydroxybutyric acid), poly(3HB), granules isolated from cells of Ralstonia eutropha H16 showed that the addition of 6.0 μg Nile red is necessary for total staining of 1.0 mg granules. The fluorescence intensity at an excitation wavelength of 550 nm and an emission wavelength of 600 nm showed high correlation to the poly(3HB) concentration of grana suspensions at different grana concentrations. These results and the staining of cell suspensions during cultivation experiments revealed that Nile red has a high potential for the quantitative determination of hydrophobic bacterial polyhydroxyalkanoic acids. Received: 13 November 1998 / Received revision: 4 February 1999 / Accepted: 12 February 1999  相似文献   

20.
In this work, carbon dots (CDs) with a high quantum yield (22.3%) were easily prepared by hydrothermal pyrolysis of acid fuchsin 6B and hydrogen peroxide at 180°C for 10 h. The resultant CDs possess a narrow size distribution in the range of 2.6 to 3.2 nm and emit blue fluorescence. Interestingly, the absorption band of metronidazole (MTZ) centered at 318 nm can complementary overlap with the excitation band of the as‐prepared CDs centered at 320 nm, resulting in an inner filter effect (IFE) in high efficiency. In fact, the fluorescence quenching of the CDs depends on the concentration of MTZ. Therefore, a simple method for the detection of MTZ can be established using the CDs‐based sensor via the IFE. The linear range of the proposed method was 0–10 μg mL?1 with the limit of detection as low as 0.257 μg mL?1. This CDs‐based sensor had been applied for the detection of MTZ in honey and MTZ tablets with the recoveries in the range of 98.0% to 105.1% and 95.7% to 106.5%, respectively. Therefore, the as‐prepared CDs have a potential to be developed as a MTZ sensor with high selectivity, sensitivity and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号