首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myoblast fusion (a critical process by which muscles grow) occurs in a multi-step fashion that requires actin and membrane remodeling; but important questions remain regarding the spatial/temporal regulation of and interrelationship between these processes. We recently reported that the Rho-GAP, GRAF1, was particularly abundant in muscles undergoing fusion to form multinucleated fibers and that enforced expression of GRAF1 in cultured myoblasts induced robust fusion by a process that required GAP-dependent actin remodeling and BAR domain-dependent membrane sculpting. Herein we developed a novel line of GRAF1-deficient mice to explore a role for this protein in the formation/maturation of myotubes in vivo. Post-natal muscles from GRAF1-depleted mice exhibited a significant and persistent reduction in cross-sectional area, impaired regenerative capacity and a significant decrease in force production indicative of lack of efficient myoblast fusion. A significant fusion defect was recapitulated in isolated myoblasts depleted of GRAF1 or its closely related family member GRAF2. Mechanistically, we show that GRAF1 and 2 facilitate myoblast fusion, at least in part, by promoting vesicle-mediated translocation of fusogenic ferlin proteins to the plasma membrane.  相似文献   

2.
Skeletal muscle formation, growth and repair depend on myoblast fusion events. Therefore, in-depth understanding of the underlying molecular mechanisms controlling these events that ultimately lead to skeletal muscle formation may be fundamental for developing new therapies for tissue repair. To this end, the greatest advances in furthering understanding myoblast fusion has been made in Drosophila. Recent studies have shown that transient F-actin structures, so-called actin plugs or foci, are known to form at the site of contacting myoblasts. Indeed, actin regulators of the WASP family that control the activation of the Arp2/3 complex and thereby branched F-actin formation have been demonstrated to be crucial for myoblast fusion. Myoblast-specific cell adhesion molecules seem to be involved in the recruitment of WASP family members to the site of myoblast fusion and form a Fusion-Restricted Myogenic-Adhesive Structure (FuRMAS). Currently, the exact role of the FuRMAS is not completely understood. However, recent studies indicate that WASP-dependent F-actin regulation is required for fusion pore formation as well as for the correct integration of fusing myoblasts into the growing muscle. In this review, I discuss latest cellular studies, and recent genetic and biochemical analyses on actin regulation during myoblast fusion.  相似文献   

3.
Myoblast differentiation and fusion to multinucleated muscle cells can be studied in myoblasts grown in culture. Calpain (Ca2+-activated thiol protease) induced proteolysis has been suggested to play a role in myoblast fusion. We previously showed that calpastatin (the endogenous inhibitor of calpain) plays a role in cell membrane fusion. Using the red cell as a model, we found that red cell fusion required calpain activation and that fusibility depended on the ratio of cell calpain to calpastatin. We found recently that calpastatin diminishes markedly in myoblasts during myoblast differentiation just prior to the start of fusion, allowing calpain activation at that stage; calpastatin reappears at a later stage (myotube formation). In the present study, the myoblast fusion inhibitors TGF-β, EGTA and calpeptin (an inhibitor of cysteine proteases) were used to probe the relation of calpastatin to myoblast fusion. Rat L8 myoblasts were induced to differentiate and fuse in serum-poor medium containing insulin. TGF-β and EGTA prevented the diminution of calpastatin. Calpeptin inhibited fusion without preventing diminution of calpastatin, by inhibiting calpain activity directly. Protein levels of μ-calpain and m-calpain did not change significantly in fusing myoblasts, nor in the inhibited, non-fusing myoblasts. The results indicate that calpastatin level is modulated by certain growth and differentiation factors and that its continuous presence results in the inhibition of myoblast fusion.  相似文献   

4.
5.
Skeletal muscle is a multinucleated syncytium that develops and is maintained by the fusion of myoblasts to the syncytium. Myoblast fusion involves the regulated coalescence of two apposed membranes. Myoferlin is a membrane-anchored, multiple C2 domain-containing protein that is highly expressed in fusing myoblasts and required for efficient myoblast fusion to myotubes. We found that myoferlin binds directly to the eps15 homology domain protein, EHD2. Members of the EHD family have been previously implicated in endocytosis as well as endocytic recycling, a process where membrane proteins internalized by endocytosis are returned to the plasma membrane. EHD2 binds directly to the second C2 domain of myoferlin, and EHD2 is reduced in myoferlin null myoblasts. In contrast to normal myoblasts, myoferlin null myoblasts accumulate labeled transferrin and have delayed recycling. Introduction of dominant negative EHD2 into myoblasts leads to the sequestration of myoferlin and inhibition of myoblast fusion. The interaction of myoferlin with EHD2 identifies molecular overlap between the endocytic recycling pathway and the machinery that regulates myoblast membrane fusion.  相似文献   

6.
Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treatment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and massive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42°C for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and nontreated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analysis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treatment.  相似文献   

7.
Lbx2 regulates formation of myofibrils   总被引:1,自引:0,他引:1  

Background  

Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The Drosophila ladybird homeobox gene (lad) functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (Lbx). Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood.  相似文献   

8.
Cell–cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell–cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an inducible knockout mouse model to generate dynamin 1– and 2–deficient primary osteoclast precursors and myoblasts, we found that fusion of both cell types requires dynamin. Osteoclast and myoblast cell–cell fusion involves the formation of actin-rich protrusions closely associated with clathrin-mediated endocytosis in the apposed cell. Furthermore, impairing endocytosis independently of dynamin also prevented cell–cell fusion. Since dynamin is involved in both the formation of actin-rich structures and in endocytosis, our results indicate that dynamin function is central to the osteoclast precursors and myoblasts fusion process, and point to an important role of endocytosis in cell–cell fusion.  相似文献   

9.
In this report, we have examined the effects of a calcium chelator, EGTA, and a calcium ionophore, A23187, on fusion of a cloned muscle cell line, L6. Our results confirm that EGTA essentially blocks all myoblast fusion because the lateral alignment of presumptive myoblasts cannot occur in the absence of extracellular calcium. A23187, however, promotes the precocious fusion of myoblasts, apparently by facilitating Ca2+ transport into myoblasts. We have also demonstrated that a Ca2+-activated protease, CAP (mM), appears to relocate in response to the Ca2+ flux, changing from a random, dispersed distribution in proliferative myoblasts to a predominantly peripheral distribution in prefusion myoblasts. Coincident with the mM CAF relocation is an altered distribution of a surface glycoprotein, fibronectin. Extracellular fibronectin is seen in abundance in proliferating myoblasts, but is essentially absent from the surface of fusing myoblasts. We suggest that mM CAF when activated by Ca2+ influx may act to promote the release of fibronectin from the myoblast cell surface, thus providing a mechanism by which the membrane of the fusing myoblast may be rearranged to accommodate fusion.  相似文献   

10.
Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treat-ment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and mas-sive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and non- treated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analy-sis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock pretreatment of myoblast in vitro is a simple and effective way to enhance cell survival after transplantation in pig. It might represent a potential method to overcome the limitations of MT treat-ment.  相似文献   

11.
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.  相似文献   

12.
Chick myoblast fusion in culture was investigated using prostanoid synthesis inhibitors to delay spontaneous fusion. During this delay myoblast fusion could be induced by prostaglandin E1 (PGE1), by raising extracellular potassium and by addition of carbachol. Carbachol-induced fusion, but not PGE-induced fusion, was prevented by the acetylcholine receptor blocker alpha-bungarotoxin. Fusion induced by any of these agents was prevented by the Ca channel blockers lanthanum and D600. The threshold for potassium-induced fusion was 7-8 mM; maximal fusion occurred at 16-20 mM. Low extracellular potassium inhibited spontaneous fusion. Intracellular potassium in fusion competent myoblasts was 101 m-moles/l cell. Calcium flux measurements demonstrated that high potassium increased calcium permeability in fusion-competent myoblasts. A 30-s exposure to high potassium or PGE1 was sufficient to initiate myoblast fusion. Anion-exchange inhibitors (SITS and DIDS) delayed spontaneous myoblast fusion and blocked fusion induced by PGE1 but not carbachol. Blocking the acetylcholine receptor shifted the dose-response relation for PGE-induced fusion to higher concentrations. PGE1-induced fusion required chloride ions; carbachol-induced fusion required sodium ions. Provided calcium channels were available, potassium always induced fusion. We conclude that myoblasts possess at least three, independent pathways, each of which can initiate myoblast fusion and that the PGE-activated pathway and the acetylcholine receptor-activated pathway act synergistically. We suggest that fusion competent myoblasts have a high resting membrane potential and that fusion is controlled by depolarization initiated directly (potassium), by an increase in permeability to chloride ions (PGE), or by activation of the acetylcholine receptor (carbachol); depolarization triggers a rise in calcium permeability. The consequent increase in intracellular calcium initiates myoblast fusion.  相似文献   

13.
The influence of triiodothyronine (T3) on avian myoblast proliferation and differentiation was studied in secondary cultures using plating densities of 2500 and 7000 cells/cm2. Culture media were depleted of T3 (control myoblasts) and increasing amounts were then added to concentrations of 0.6, 3 and 15 nM T3 (treated myoblasts). Independent of the cell density, T3 induced a dose-related decrease in myoblast proliferation measured by cell number, doubling time and 3H-thymidine incorporation. However, with the lower plating density, this influence was delayed, occurring only after the third day of culture for 0.6 nM T3-treated myoblasts and simultaneous with the onset of myosin heavy chain accumulation. Moreover, when myoblasts were exposed to BrdU for 48 h, the T3 growth inhibitory effect disappeared, thus showing that this effect was clearly linked to differentiation. In addition, we have shown that T3 induced an early fusion of myoblasts: 65% of the maximal value of the fusion index was reached on day 3 in the T3-treated cells in comparison to 25% in the control myoblasts. This hormone also enhanced accumulation of muscle-specific proteins (connectin, acetylcholine receptors, myosin heavy chain), tested by cytoimmunofluorescence, ELISA, binding experiments and Western blot. All these results show that T3 increased myoblast differentiation through a pathway including myoblast withdrawal from the cell cycle. The influence of T3 could partly explain its previously reported positive effect on the number of muscle fibers.  相似文献   

14.
Rat myoblast fusion requires metalloendoprotease activity   总被引:22,自引:0,他引:22  
C B Couch  W J Strittmatter 《Cell》1983,32(1):257-265
The calcium-dependent fusion of cultured rat myoblasts to multinucleate myotubes appears to require the activity of a neutral metalloendoprotease at the time of fusion. Metalloendoprotease inhibitors and synthetic dipeptide substrates prevent myoblast fusion when added to fusion-competent myoblasts with the addition of calcium. Metalloendoprotease activity has been identified and partially characterized in myoblast membranes with a fluorogenic protease substrate, and is inhibited by the same compounds that prevent fusion.  相似文献   

15.
The pattern of protein phosphorylation was found to change in differentiating chick embryonic myoblasts in culture. The extent of phosphorylation of 42-, 50-, and 100-kDa proteins increased while that of a 63-kDa protein declined in extracts of myoblasts that had been cultured for increasing periods. Of these, the increase in phosphorylation of the 100-kDa protein occurred most dramatically in extracts of myoblasts in an early stage of differentiation and was specifically inhibited by trifluoperazine (TFP) and other calmodulin (CaM) antagonists including chlorpromazine and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7). Treatment of increasing concentrations of TFP to culture medium also decreased the phosphorylation state of the 100-kDa protein and the degree of myoblast fusion in parallel. In addition, levels of both the kinase activity and the 100-kDa protein but not of CaM appeared to rise in the cells cultured for longer periods. These results suggest that (1) a Ca2+/CaM-dependent protein kinase is responsible for phosphorylation of the 100-kDa protein, (2) the TFP-mediated myoblast fusion block may be associated with the inhibitory effect of the drug against the kinase activity, and (3) the increase in phosphorylation state of the 100-kDa protein during myogenic differentiation is due to the rise in levels of the kinase and its substrate.  相似文献   

16.
17.
Syncytins are envelope genes from endogenous retroviruses, “captured” for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20–40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals.  相似文献   

18.
Myoblast transplantation (MT) is a method to introduce healthy genes into abnormal skeletal muscle. It has been considered as a therapeutic modality in the last few decades for diseases such as Duchenne Muscular Dystrophy (DMD). However, challenges including cell death and poor graft engraftment have limited its application. The current experiment utilizes MMP1 gene transfer to improve the efficacy of myoblast transplantation into the diseased dystrophic skeletal muscle of mdx mice. Our results indicated that MMP1 expression can promote myogenic differentiation and fusion capacities, increase migration of MMP1 expressing myoblasts in vitro, as well as improve engraftment of dystrophin positive myofibers in vivo. Taken together, our observation suggests that the addition of MMP1 can overcome limitations in MT and improve its clinical efficacy.  相似文献   

19.
The role of a β-D-galactosyl-specific lectin, first reported by Teichberg et al., in the fusion of myoblasts in vitro was investigated. The concentration of this lectin in embryonic chick skeletal muscle was found to reach maximal levels at the time of myoblast fusion in vivo. β-D-Galactosyl-β-thiogalactopyranoside and lactose are potent inhibitors of agglutination of trypsinized rabbit erythrocytes caused by the lectin. However, at concentrations of 50 mM these compounds had no effect on either nonsynchronous fusion of myoblasts or on the release of synchronized myoblast cultures from EGTA fusion block. The presence of the agglutinin in the external membranes of chick myoblasts and myotubes could not be demonstrated. It is, therefore, concluded that the involvement of the lectin in the fusion of chick myoblasts remains questionable.  相似文献   

20.

Background

Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified.

Findings

We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK) and microtubule affinity regulating kinases (MARKs). LKB1 overexpression accelerated differentiation, whereas RNAi impaired it.

Conclusions

Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号