共查询到20条相似文献,搜索用时 0 毫秒
1.
Chyong‐Mei Chen Pao‐sheng Shen Wei‐Lun Huang 《Biometrical journal. Biometrische Zeitschrift》2019,61(1):203-215
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration. 相似文献
2.
3.
Lianming Wang Christopher S. McMahan Michael G. Hudgens Zaina P. Qureshi 《Biometrics》2016,72(1):222-231
4.
Metric data are usually assessed on a continuous scale with good precision, but sometimes agricultural researchers cannot obtain precise measurements of a variable. Values of such a variable cannot then be expressed as real numbers (e.g., 1.51 or 2.56), but often can be represented by intervals into which the values fall (e.g., from 1 to 2 or from 2 to 3). In this situation, statisticians talk about censoring and censored data, as opposed to missing data, where no information is available at all. Traditionally, in agriculture and biology, three methods have been used to analyse such data: (a) when intervals are narrow, some form of imputation (e.g., mid‐point imputation) is used to replace the interval and traditional methods for continuous data are employed (such as analyses of variance [ANOVA] and regression); (b) for time‐to‐event data, the cumulative proportions of individuals that experienced the event of interest are analysed, instead of the individual observed times‐to‐event; (c) when intervals are wide and many individuals are collected, non‐parametric methods of data analysis are favoured, where counts are considered instead of the individual observed value for each sample element. In this paper, we show that these methods may be suboptimal: The first one does not respect the process of data collection, the second leads to unreliable standard errors (SEs), while the third does not make full use of all the available information. As an alternative, methods of survival analysis for censored data can be useful, leading to reliable inferences and sound hypotheses testing. These methods are illustrated using three examples from plant and crop sciences. 相似文献
5.
6.
Sufficient dimension reduction (SDR) that effectively reduces the predictor dimension in regression has been popular in high‐dimensional data analysis. Under the presence of censoring, however, most existing SDR methods suffer. In this article, we propose a new algorithm to perform SDR with censored responses based on the quantile‐slicing scheme recently proposed by Kim et al. First, we estimate the conditional quantile function of the true survival time via the censored kernel quantile regression (Shin et al.) and then slice the data based on the estimated censored regression quantiles instead of the responses. Both simulated and real data analysis demonstrate promising performance of the proposed method. 相似文献
7.
8.
9.
The Botswana Combination Prevention Project was a cluster-randomized HIV prevention trial whose follow-up period coincided with Botswana's national adoption of a universal test and treat strategy for HIV management. Of interest is whether, and to what extent, this change in policy modified the preventative effects of the study intervention. To address such questions, we adopt a stratified proportional hazards model for clustered interval-censored data with time-dependent covariates and develop a composite expectation maximization algorithm that facilitates estimation of model parameters without placing parametric assumptions on either the baseline hazard functions or the within-cluster dependence structure. We show that the resulting estimators for the regression parameters are consistent and asymptotically normal. We also propose and provide theoretical justification for the use of the profile composite likelihood function to construct a robust sandwich estimator for the variance. We characterize the finite-sample performance and robustness of these estimators through extensive simulation studies. Finally, we conclude by applying this stratified proportional hazards model to a re-analysis of the Botswana Combination Prevention Project, with the national adoption of a universal test and treat strategy now modeled as a time-dependent covariate. 相似文献
10.
Jinheum Kim Yang‐Jin Kim Chung Mo Nam 《Biometrical journal. Biometrische Zeitschrift》2009,51(4):689-696
11.
Soohyun Ahn Johan Lim Myunghee Cho Paik Ralph L. Sacco Mitchell S. Elkind 《Biometrical journal. Biometrische Zeitschrift》2018,60(4):797-814
In cohort studies the outcome is often time to a particular event, and subjects are followed at regular intervals. Periodic visits may also monitor a secondary irreversible event influencing the event of primary interest, and a significant proportion of subjects develop the secondary event over the period of follow‐up. The status of the secondary event serves as a time‐varying covariate, but is recorded only at the times of the scheduled visits, generating incomplete time‐varying covariates. While information on a typical time‐varying covariate is missing for entire follow‐up period except the visiting times, the status of the secondary event are unavailable only between visits where the status has changed, thus interval‐censored. One may view interval‐censored covariate of the secondary event status as missing time‐varying covariates, yet missingness is partial since partial information is provided throughout the follow‐up period. Current practice of using the latest observed status produces biased estimators, and the existing missing covariate techniques cannot accommodate the special feature of missingness due to interval censoring. To handle interval‐censored covariates in the Cox proportional hazards model, we propose an available‐data estimator, a doubly robust‐type estimator as well as the maximum likelihood estimator via EM algorithm and present their asymptotic properties. We also present practical approaches that are valid. We demonstrate the proposed methods using our motivating example from the Northern Manhattan Study. 相似文献
12.
13.
Vinicius F. Calsavara Agatha S. Rodrigues Ricardo Rocha Vera Tomazella Francisco Louzada 《Biometrical journal. Biometrische Zeitschrift》2019,61(4):841-859
Regression models in survival analysis are most commonly applied for right‐censored survival data. In some situations, the time to the event is not exactly observed, although it is known that the event occurred between two observed times. In practice, the moment of observation is frequently taken as the event occurrence time, and the interval‐censored mechanism is ignored. We present a cure rate defective model for interval‐censored event‐time data. The defective distribution is characterized by a density function whose integration assumes a value less than one when the parameter domain differs from the usual domain. We use the Gompertz and inverse Gaussian defective distributions to model data containing cured elements and estimate parameters using the maximum likelihood estimation procedure. We evaluate the performance of the proposed models using Monte Carlo simulation studies. Practical relevance of the models is illustrated by applying datasets on ovarian cancer recurrence and oral lesions in children after liver transplantation, both of which were derived from studies performed at A.C. Camargo Cancer Center in São Paulo, Brazil. 相似文献
14.
Current status data are a type of interval-censored event time data in which all the individuals are either left or right censored. For example, our motivation is drawn from a cross-sectional study, which measured whether or not fibroid onset had occurred by the age of an ultrasound exam for each woman. We propose a semiparametric Bayesian proportional odds model in which the baseline event time distribution is estimated nonparametrically by using adaptive monotone splines in a logistic regression model and the potential risk factors are included in the parametric part of the mean structure. The proposed approach has the advantage of being straightforward to implement using a simple and efficient Gibbs sampler, whereas alternative semiparametric Bayes' event time models encounter problems for current status data. The model is generalized to allow systematic underreporting in a subset of the data, and the methods are applied to an epidemiologic study of uterine fibroids. 相似文献
16.
Andersen PK Ekstrøm CT Klein JP Shu Y Zhang MJ 《Biometrical journal. Biometrische Zeitschrift》2005,47(6):815-824
The copula of a bivariate distribution, constructed by making marginal transformations of each component, captures all the information in the bivariate distribution about the dependence between two variables. For frailty models for bivariate data the choice of a family of distributions for the random frailty corresponds to the choice of a parametric family for the copula. A class of tests of the hypothesis that the copula is in a given parametric family, with unspecified association parameter, based on bivariate right censored data is proposed. These tests are based on first making marginal Kaplan-Meier transformations of the data and then comparing a non-parametric estimate of the copula to an estimate based on the assumed family of models. A number of options are available for choosing the scale and the distance measure for this comparison. Significance levels of the test are found by a modified bootstrap procedure. The procedure is used to check the appropriateness of a gamma or a positive stable frailty model in a set of survival data on Danish twins. 相似文献
17.
Hoi Min Ng Binyan Jiang Kin Yau Wong 《Biometrical journal. Biometrische Zeitschrift》2023,65(1):2100139
Recent technological advances have made it possible to collect high-dimensional genomic data along with clinical data on a large number of subjects. In the studies of chronic diseases such as cancer, it is of great interest to integrate clinical and genomic data to build a comprehensive understanding of the disease mechanisms. Despite extensive studies on integrative analysis, it remains an ongoing challenge to model the interaction effects between clinical and genomic variables, due to high dimensionality of the data and heterogeneity across data types. In this paper, we propose an integrative approach that models interaction effects using a single-index varying-coefficient model, where the effects of genomic features can be modified by clinical variables. We propose a penalized approach for separate selection of main and interaction effects. Notably, the proposed methods can be applied to right-censored survival outcomes based on a Cox proportional hazards model. We demonstrate the advantages of the proposed methods through extensive simulation studies and provide applications to a motivating cancer genomic study. 相似文献
18.
In this paper, we consider the problem of nonparametric curve fitting in the specific context of censored data. We propose an extension of the penalized splines approach using Kaplan–Meier weights to take into account the effect of censorship and generalized cross‐validation techniques to choose the smoothing parameter adapted to the case of censored samples. Using various simulation studies, we analyze the effectiveness of the censored penalized splines method proposed and show that the performance is quite satisfactory. We have extended this proposal to a generalized additive models (GAM) framework introducing a correction of the censorship effect, thus enabling more complex models to be estimated immediately. A real dataset from Stanford Heart Transplant data is also used to illustrate the methodology proposed, which is shown to be a good alternative when the probability distribution for the response variable and the functional form are not known in censored regression models. 相似文献
19.
Several simple, intuitive, explicitly computable estimation procedures for relative risk with interval‐censored data are proposed. These procedures are the modified versions of relative risk estimators for right‐censored data developed by Peto, Pike, and Andersen. Simulation study is conducted to demonstrate the performances of the proposed estimators. 相似文献
20.
Kwok Fai Lam Kin Yau Wong Feifei Zhou 《Biometrical journal. Biometrische Zeitschrift》2013,55(5):771-788
There is a growing interest in the analysis of survival data with a cured proportion particularly in tumor recurrences studies. Biologically, it is reasonable to assume that the recurrence time is mainly affected by the overall health condition of the patient that depends on some covariates such as age, sex, or treatment type received. We propose a semiparametric frailty‐Cox cure model to quantify the overall health condition of the patient by a covariate‐dependent frailty that has a discrete mass at zero to characterize the cured patients, and a positive continuous part to characterize the heterogeneous health conditions among the uncured patients. A multiple imputation estimation method is proposed for the right‐censored case, which is further extended to accommodate interval‐censored data. Simulation studies show that the performance of the proposed method is highly satisfactory. For illustration, the model is fitted to a set of right‐censored melanoma incidence data and a set of interval‐censored breast cosmesis data. Our analysis suggests that patients receiving treatment of radiotherapy with adjuvant chemotherapy have a significantly higher probability of breast retraction, but also a lower hazard rate of breast retraction among those patients who will eventually experience the event with similar health conditions. The interpretation is very different to those based on models without a cure component that the treatment of radiotherapy with adjuvant chemotherapy significantly increases the risk of breast retraction. 相似文献