首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
β‐1,3‐glucan recognition proteins (βGRPs) function as pattern recognition receptors in the innate immune response against invading pathogens. In the present study, we obtain full‐length cDNA clones for two novel putative βGRPs: TpβGRPc and TpβGRPd from the ghost moth Thitarodes pui (Lepidoptera: Hepialidae). Phylogenetic analysis shows a small distinct lineage, βGRP clade 4, consisting of T. pui βGRPs including TpβGRPa and TpβGRPb that have been identified previously. TpβGRPc and TpβGRPd, comprising 488 and 229 amino acids, have calculated molecular masses of 52 596 and 24 589 Da, respectively. TpβGRPc is 85.52% identical in sequence to TpβGRPa. TpβGRPb and TpβGRPd share the same deletion start site located at the conserved residue Pro 43, although TpβGRPd exhibits a much larger deletion of up to approximately 270 residues covering both the N‐ and C‐terminal regions. Affinity purification, associated with subsequent peptide sequencing, confirms the constitutive occurrence of TpβGRPa and TpβGRPc of similar size (approximately 65 kDa) in sixth‐instar larval haemolymph. These two βGRPs show clear binding affinities to curdlan, an insoluble β‐1,3‐glucan. A quantitative real‐time polymerase chain reaction analysis reveals the high‐level constitutive expression of TpβGRPc and TpβGRPd in the fat body of mid‐instar larvae, which are found to be susceptible to fungal pathogens in field investigations. Remarkable induction of both TpβGRPs occurs in response to haemocoelic challenge with entomopathogenic fungus Beauveria bassiana. The results of the present study suggest that TpβGRPs may contribute to the detection and control of fungal infections.  相似文献   

2.
3.
4.
【目的】小金蝠蛾Thitarodes xiaojinensis是冬虫夏草菌Ophiocordyceps sinensis的寄主昆虫,生活于高海拔、高寒地区,低温适应性强,但在室温下(25~27℃)不能正常存活。本研究检测了热胁迫(27℃)对小金蝠蛾幼虫消化酶及抗氧化系统的影响,以期揭示小金蝠蛾室温不耐受的生理机制。【方法】小金蝠蛾8龄幼虫分两组进行处理:高温组于27℃下饲养,对照组于16℃下饲养。处理24 h后观察虫体状态,并解剖,取中肠及血淋巴。透射电镜观察中肠细胞线粒体结构,分别测定中肠总蛋白酶和糖基水解酶活性,血淋巴丙二醛(MDA)含量,以及血淋巴保护酶系中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性。【结果】两组幼虫中肠总蛋白酶及糖基水解酶活性均随反应温度(16~37℃)升高而增强。协方差分析显示,高温组幼虫酶活性极显著低于对照组(P<0.01)。然而,高温组幼虫在27℃下的酶活性与对照组幼虫在16℃下的酶活性无显著差异(P<0.05)。热胁迫下虫体血淋巴中丙二醛含量显著升高(P<0.05),提示出现了氧化损伤。透射电镜结果显示,高温组中肠细胞线粒体肿胀,膜受损,嵴排列混乱,结构破坏。对活性氧起清除作用的3种保护酶中,仅POD活性显著升高(P<0.05),SOD和CAT活性均无显著变化(P>0.05)。【结论】消化酶活性的变化可能不是小金蝠蛾室温不耐受的重要因素;氧化损伤是其热胁迫下不能正常存活的一个重要原因。  相似文献   

5.
C‐type lectins (CTLs) play a variety of roles in plants and animals. They are involved in animal development, pathogen recognition, and the activation of immune responses. CTLs carry one or more non‐catalytic carbohydrate‐recognition domains (CRDs) to bind specific carbohydrates reversibly. Here, we report the molecular cloning and functional analysis of a single‐CRD CTL, named C‐type lectin‐S2 (BmCTL‐S2) from the domesticated silkmoth Bombyx mori (Lepidoptera: Bombycidae). The ORF of CTL‐S2 is 666 bp, which encodes a putative protein of 221 amino acids. BmCTL‐S2 is expressed in a variety of immune‐related tissues, including hemocytes and fat body among others. BmCTL‐S2 mRNA level in the midgut and the fat body was significantly increased by bacterial challenges. The recombinant protein (rBmCTL‐S2) bound different bacterial cell wall components and bacterial cells. rBmCTL‐S2 also inhibited the growth of Bacillus subtilis and Staphylococcus aureus. Taken together, we infer that BmCTL‐S2 is a pattern‐recognition receptor with antibacterial activities.  相似文献   

6.
Matrilysin (MMP‐7) plays important roles in tumor progression. Previous studies have suggested that MMP‐7 binds to tumor cell surface and promotes their metastatic potential. In this study, we identified C‐type lectin domain family 3 member A (CLEC3A) as a membrane‐bound substrate of MMP‐7. Although this protein is known to be expressed specifically in cartilage, its message was found in normal breast and breast cancer tissues as well as breast and colon cancer cell lines. Because few studies have been done on CLEC3A, we overexpressed its recombinant protein in human cancer cells. CLEC3A was found in the cell membrane, extracellular matrix (ECM), and culture medium of the CLEC3A‐expressing cells. CLEC3A has a basic sequence in the NH2‐terminal domain and showed a strong heparin‐binding activity. MMP‐7 cleaved the 20‐kDa CLEC3A protein, dividing it to a 15‐kDa COOH‐terminal fragment and an NH2‐terminal fragment with the basic sequence. The 15‐kDa fragment no longer had heparin‐binding activity. Treatment of the CLEC3A‐expressing cells with MMP‐7 released the 15‐kDa CLEC3A into the culture supernatant. Furthermore, the 20‐kDa CLEC3A promoted cell adhesion to laminin‐332 and fibronectin substrates, but this activity was abrogated by the cleavage by MMP‐7. These results suggest that CLEC3A binds to heparan sulfate proteoglycans on cell surface, leading to the enhancement of cell adhesion to integrin ligands on ECM. It can be speculated that the cleavage of CLEC3A by MMP‐7 weakens the stable adhesion of tumor cells to the matrix and promotes their migration in tumor microenvironments. J. Cell. Biochem. 106: 693–702, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
We report on crystal structures of a carbohydrate recognition domain (CRD) of human C‐type lectin receptor blood dendritic cell antigen‐2 (BDCA2). Three different crystal forms were obtained at 1.8–2.3 Å resolution. In all three, the CRD has a basic C‐type lectin fold, but a long loop extends away from the core domain to form a domain‐swapped dimer. The structures of the dimers from the three different crystal forms superimpose well, indicating that domain swapping and dimer formation are energetically stable. The structure of the dimer is compared with other domain‐swapped proteins, and a possible regulation mechanism of BDCA2 is discussed. Proteins 2014; 82:1512–1518. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Novel Ca2+‐independent C‐type lectins, SPL‐1 and SPL‐2, were purified from the bivalve Saxidomus purpuratus. They are composed of dimers with either identical (SPL‐2 composed of two B‐chains) or distinct (SPL‐1 composed of A‐ and B‐chains) polypeptide chains, and show affinity for N‐acetylglucosamine (GlcNAc)‐ and N‐acetylgalactosamine (GalNAc)‐containing carbohydrates, but not for glucose or galactose. A database search for sequence similarity suggested that they belong to the C‐type lectin family. X‐ray crystallographic analysis revealed definite structural similarities between their subunits and the carbohydrate‐recognition domain (CRD) of the C‐type lectin family. Nevertheless, these lectins (especially SPL‐2) showed Ca2+‐independent binding affinity for GlcNAc and GalNAc. The crystal structure of SPL‐2/GalNAc complex revealed that bound GalNAc was mainly recognized via its acetamido group through stacking interactions with Tyr and His residues and hydrogen bonds with Asp and Asn residues, while widely known carbohydrate‐recognition motifs among the C‐type CRD (the QPD [Gln‐Pro‐Asp] and EPN [Glu‐Pro‐Asn] sequences) are not involved in the binding of the carbohydrate. Carbohydrate‐binding specificities of individual A‐ and B‐chains were examined by glycan array analysis using recombinant lectins produced from Escherichia coli cells, where both subunits preferably bound oligosaccharides having terminal GlcNAc or GalNAc with α‐glycosidic linkages with slightly different specificities.  相似文献   

9.
Thitarodes pui larvae have a limited distribution in the Tibetan Plateau and are the host of a parasitic fungus, Ophiocordyceps sinensis. Low temperature is a main environmental stress. However, understanding of T. pui cold adaptation mechanisms is insufficient. Delta‐9‐acyl‐CoA desaturase (D9D) is closely correlated with cold adaptation for many organisms. To further understand the cold adaptation processes in T. pui larvae, two D9Ds, TpdesatA and TpdesatB were sequenced, and expression patterns were investigated during different seasons and cold exposure (under 0°C) in the laboratory. The full lengths of two cDNAs are 1,290 bp and 1,603 bp, and the ORFs encode a polypeptide of 348 and 359 amino acids, respectively. Four transmembrane domains, three conserved histidine residues and five hydrophobic regions exist in these two sequences. The expression level of TpdesatA is up‐regulated in the long‐term cold exposure and negatively correlated with temperature in seasonal patterns. TpdesatB responds to cold temperature in short‐term cold exposure and positively corresponds temporarily in seasonal expression. Two D9Ds may have different substrate specificities, TpdesatA tends to use C16:0 and C18:0 as substrate while TpdesatB prefers C18:0. In conclusion, TpdesatA may play a very important role in T. pui cold tolerance and TpdesatB regulates function in short‐term cold exposure and content change of fatty acids in the body.  相似文献   

10.
Zelensky AN  Gready JE 《Proteins》2003,52(3):466-477
The superfamily of proteins containing the C-type-lectin-like domain (CTLD) is a group of abundant extracellular metazoan proteins characterized by evolutionary flexibility and functional versatility. Several CTLDs are also found in parasitic prokaryotes and viruses. The 37 distinct currently available CTLD structures demonstrate significant structural conservation despite low or undetectable sequence similarity. Our aim in this study was to perform an extensive comparative analysis of all available CTLD structures to establish the most conserved structural features of the fold, and to test and extend the early analysis of Drickamer. By implication, these features should be those critical for maintenance of integrity of the fold. By analyzing CTLD structures superimposed by several methods, we have established groups of conserved structural positions involved in fold maintenance but not in ligand binding; these are consistent with the fold's known functional flexibility. In addition to the well-recognized disulfide bridges, groups of conserved residues are involved in hydrophobic interactions stabilizing the core of the fold and the long loop region, and in an alpha2-beta1-beta5 polar interaction. Evaluation of the conclusions of the structure comparison study compared with alignments of all available human, mouse and Caenorhabditis elegans CTLD sequences showed that conservation patterns are preserved throughout the whole CTLD sequence space. Our observations provide an improved understanding of CTLD structure, and will help in identification of new CTLDs and the mechanisms that drive and constrain the coevolution of the structure and function of the fold.  相似文献   

11.
Staphylococcus aureus is a common skin commensal but is also associated with various skin and soft tissue pathologies. Upon invasion, S. aureus is detected by resident innate immune cells through pattern‐recognition receptors (PRRs), although a comprehensive understanding of the specific molecular interactions is lacking. Recently, we demonstrated that the PRR langerin (CD207) on epidermal Langerhans cells senses the conserved β‐1,4‐linked N‐acetylglucosamine (GlcNAc) modification on S. aureus wall teichoic acid (WTA), thereby increasing skin inflammation. Interestingly, the S. aureus ST395 lineage as well as certain species of coagulase‐negative staphylococci (CoNS) produce a structurally different WTA molecule, consisting of poly‐glycerolphosphate with α‐O‐N‐acetylgalactosamine (GalNAc) residues, which are attached by the glycosyltransferase TagN. Here, we demonstrate that S. aureus ST395 strains interact with the human Macrophage galactose‐type lectin (MGL; CD301) receptor, which is expressed by dendritic cells and macrophages in the dermis. MGL bound S. aureus ST395 in a tagN‐ and GalNAc‐dependent manner but did not interact with different tagN‐positive CoNS species. However, heterologous expression of Staphylococcus lugdunensis tagN in S. aureus conferred phage infection and MGL binding, confirming the role of this CoNS enzyme as GalNAc‐transferase. Functionally, the detection of GalNAc on S. aureus ST395 WTA by human monocyte‐derived dendritic cells significantly enhanced cytokine production. Together, our findings highlight differential recognition of S. aureus glycoprofiles by specific human innate receptors, which may affect downstream adaptive immune responses and pathogen clearance.  相似文献   

12.
13.
14.
The cDNAs of two C‐type lectins in grass carp Ctenopharyngodon idella, galactose‐binding lectin (galbl) and mannose‐binding lectin (mbl), were cloned and analysed in this study. Both of them exhibited the highest expression level in liver, whereas their expression pattern differed in early phase of embryonic development. Following exposure to grass carp reovirus (GCRV), the mRNA expression level of galbl and mbl was significantly up‐regulated in liver and intestine.  相似文献   

15.
Lebecetin is an anticoagulant C‐type lectin‐like protein that was previously isolated from Macrovipera lebetina venom and described to consist of two subunits (alpha and beta). It was reported to potently prevent platelet aggregation by binding to glycoprotein Ib and to exhibit a broad spectrum of inhibitory activities on various integrin‐mediated functions of tumor cells, including adhesion, proliferation, and cell migration. This study aimed to investigate the structure‐function of lebecetin. Accordingly, the cDNA of each subunit was cloned and separately or jointly expressed in the human embryonic kidney cells using two vectors with different selectable tags. The immunofluorescence analysis of transfected cells revealed significant expression levels and co‐localization of the two lebecetin subunits. The recombinant proteins were efficiently secreted and purified using metal‐chelating affinity chromatography. We found that the Lebecetin alpha and beta subunits were produced as a mixture of homodimers and heterodimers and that the heterodimerization represents a prerequisite for functioning. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

16.
[目的] 通过克隆苹果蠹蛾气味结合蛋白CpomOBP20基因cDNA序列,分析其序列特征和表达谱,旨在更好地了解OBP基因在苹果蠹蛾生命活动过程中的作用,为该害虫的绿色防控提供理论支撑。[方法] 采用RT-PCR法扩增苹果蠹蛾气味结合蛋白CpomOBP20基因cDNA序列,并使用生物信息学软件对其核苷酸和氨基酸序列进行分析;基于qPCR技术分析CpomOBP20基因在苹果蠹蛾4龄幼虫不同组织(头、血淋巴、表皮、脂肪体、中肠、马氏管和唾液腺)以及雌雄成虫不同末端组织(头、触角、下唇须、喙、足和翅)中的表达情况,利用分子对接研究了CpomOBP20与3种保幼激素的结合能力。[结果] 苹果蠹蛾气味结合蛋白CpomOBP20基因的开放阅读框长459 bp,共编码152个氨基酸,等电点为6.30,蛋白分子质量为16.264 ku,N末端具有20个氨基酸组成的信号肽序列,蛋白质序列中具有6个保守的半胱氨酸残基,属于Classical OBP。序列分析表明,CpomOBP20的氨基酸序列与小菜蛾OBP (XP_011557123.1)的一致性最高,在亲缘关系上更加接近。qPCR结果表明,CpomOBP20基因在苹果蠹蛾4龄幼虫以及雌雄成虫不同组织中均有表达,其中在4龄幼虫的血淋巴中表达量最高,在雌雄成虫表达量最高的分别是翅和足,其次是头部。分子对接结果表明,CpomOBP20与3种保幼激素均具有较好的结合能力,可能参与保幼激素的结合与转运。[结论] 本研究明确了CpomOBP20的核苷酸和氨基酸序列的组成及编码蛋白的理化性质,并推测CpomOBP20的作用可能不仅局限于嗅觉识别,在非嗅觉器官中也可能起着重要的生理作用,为今后更深入地探究气味结合蛋白在苹果蠹蛾生命活动中的作用机理提供数据支撑。  相似文献   

17.
Within the CAZy database, there are 81 carbohydrate‐binding module (CBM) families. A CBM represents a non‐catalytic domain in a modular arrangement of glycoside hydrolases (GHs). The present in silico study has been focused on starch‐binding domains from the family CBM41 that are usually part of pullulanases from the α‐amylase family GH13. Currently there are more than 1,600 sequences classified in the family CBM41, almost exclusively from Bacteria, and so a study was undertaken in an effort to divide the members into relevant groups (subfamilies) and also to contribute to the evolutionary picture of family CBM41. The CBM41 members adopt a β‐sandwich fold (~100 residues) with one carbohydrate‐binding site formed by the side‐chains of three aromatic residues that interact with carbohydrate. The family CBM41 can be divided into two basic subdivisions, distinguished from each other by a characteristic sequence pattern or motif of the three essential aromatics as follows: (i) “W‐W‐~10aa‐W” (the so‐called Streptococcus/Klebsiella‐type); and (ii) “W‐W‐~30aa‐W” (Thermotoga‐type). Based on our bioinformatics analysis it is clear that the first and second positions of the motif can be occupied by aromatic residues (Phe, Tyr, His) other than tryptophan, resulting in the existence of six different carbohydrate‐binding CBM41 groups, that reflect mostly differences in taxonomy, but which should retain the ability to bind an α‐glucan. In addition, three more groups have been proposed that, although lacking the crucial aromatic motif, could possibly employ other residues from remaining parts of their sequence for binding carbohydrate. Proteins 2017; 85:1480–1492. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Human small C‐terminal domain phosphatase 1 (Scp1) modulates the phosphorylation state of the C‐terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II), with preference for phosphorylated Ser5 in the tandem heptad repeats of the CTD. Additionally, Scp1 was identified as a conserved regulator of neuronal stem cell development. Scp1 is a member of haloacid dehalogenase (HAD) superfamily, whose catalysis depends on a Mg2+ ion and a DXDX(T/V) motif. The first Asp of the motif is identified as the nucleophile that is subject to phosphorylation leading to a phosphoryl‐aspartate intermediate. This high‐energy mixed anhydride intermediate is subsequently hydrolyzed to regenerate the enzyme. In the present study, we successfully captured the phosphoryl‐aspartate intermediate in the crystal structure of a Scp1D206A mutant soaked with para‐nitrophenyl phosphate (pNPP), providing strong evidence for the proposed mechanism. Furthermore, steady‐state kinetic analysis of a variety of Scp1 mutants revealed the importance of Asp206 in Mg2+ coordination mediated by a water molecule. Overall, we captured the snapshots of the phosphoryl transfer reaction at each stage of Scp1‐mediated catalysis. Through structural‐based sequence alignment, we show that the spatial position of the D206 side chain is strictly conserved throughout HAD family. Our results strongly suggest that Asp206 and its equivalent residues in other HAD family members play important structural and possible mechanistic roles.  相似文献   

19.
We report on the synthesis, activity testing, docking, and quantum mechanical scoring of novel imidazo[1,2‐c]pyrimidin‐5(6H)‐one scaffold for cyclin‐dependent kinase 2 (CDK2) inhibition. A series of 26 compounds substituted with aromatic moieties at position 8 has been tested in in vitro enzyme assays and shown to inhibit CDK2. 2D structure‐activity relationships have ascertained that small substituents at position 8 (up to the size of naphtyl or methoxyphenyl) generally lead to single‐digit micromolar IC50 values, whereas bigger substituents (substituted biphenyls) decreased the compounds' activities. The binding modes of the compounds obtained using Glide docking have exhibited up to 2 hinge‐region hydrogen bonds to CDK2 and differed in the orientation of the inhibitor core and the placement of the 8‐substituents. Semiempirical quantum mechanics‐based scoring identified probable favourable binding modes, which will serve for future structure‐based design and synthetic optimization of substituents of the heterocyclic core. In summary, we have identified a novel core for CDK2 inhibition and will explore it further to increase the potencies of the compounds and also monitor selectivities against other protein kinases.  相似文献   

20.
【目的】触角结合蛋白(antennal binding proteins,ABPs)为昆虫气味结合蛋白(odorant binding proteins,OBPs)家族的一个亚类,是昆虫识别和响应外界环境中气味信号的载体之一,对昆虫的生存和繁衍有着重要的意义。明确触角结合蛋白在小菜蛾Plutella xylostella(L.)嗅觉识别中的作用,有助于揭示小菜蛾嗅觉识别分子机制。【方法】利用PCR技术克隆小菜蛾的一个触角结合蛋白基因;采用实时荧光定量PCR技术对该基因在小菜蛾不同发育阶段和成虫不同组织中的表达量进行分析;利用荧光竞争结合实验测试该触角结合蛋白与39种配基化合物的结合特性。【结果】成功克隆了一个小菜蛾触角结合蛋白基因,命名为Pxyl OBP31(Gen Bank登录号:KT156676)。序列分析结果显示,其开放阅读框全长411 bp,编码136个氨基酸,N端自起始位置开始21个氨基酸为信号肽,含有气味结合蛋白家族的6个保守半胱氨酸残基,预测分子量为14.74 k D,等电点为4.41。表达谱分析表明,Pxyl OBP31主要在雄蛾中表达,且交配后的雄蛾中表达量明显降低;该基因在小菜蛾触角中有较高表达,在雄蛾触角中的表达量比雌蛾触角中高近2倍。结合特性实验结果显示,Pxyl OBP31与醛、酮、萜品油烯以及邻苯二甲酸二异丁酯等物质的结合能力较强,与3种性信息素及其他烯烃与酯类结合能力弱。【结论】本研究明确了Pxyl OBP31的核苷酸序列以及发育和组织表达谱。根据qRT-PCR和荧光竞争结合实验结果,推测Pxyl OBP31蛋白可能与小菜蛾觅偶、定位寄主植物等行为有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号