首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The importance of plasmonic nanoparticles in sensor development, imaging, photodiagnostics, and optoelectronics has resulted in a strong interest toward the development of straightforward synthetic methods for their preparation. In this article, we review some of the most significant advances that have been made in the synthesis of plasmonic bimetallic nanoparticles. Approaches to control morphology, with an emphasis on reactions that produce uniform particles with well-defined sizes and shapes and in high yields, are described. In addition, several characterization techniques that have been employed to elucidate the morphology of the particles are illustrated.  相似文献   

2.
3.
Mixed transition‐metal oxides (MTMOs), including stannates, ferrites, cobaltates, and nickelates, have attracted increased attention in the application of high performance lithium‐ion batteries. Compared with traditional metal oxides, MTMOs exhibit enormous potential as electrode materials in lithium‐ion batteries originating from higher reversible capacity, better structural stability, and high electronic conductivity. Recent advancements in the rational design of novel MTMO micro/nanostructures for lithium‐ion battery anodes are summarized and their energy storage mechanism is compared to transition‐metal oxide anodes. In particular, the significant effects of the MTMO morphology, micro/nanostructure, and crystallinity on battery performance are highlighted. Furthermore, the future trends and prospects, as well as potential problems, are presented to further develop advanced MTMO anodes for more promising and large‐scale commercial applications of lithium‐ion batteries.  相似文献   

4.
本文简要介绍了表面增强拉曼散射(SERS)的拉曼信号增强原理,常规SERS增强基底的研究应用进展;同时介绍了疏水性基底的定义及优势,并重点综述了疏水性SERS基底的分类及研究应用的进展;最后展望了疏水性SERS基底的研究方向和发展趋势。疏水性SERS基底的发展将有望为今后开展面向超低浓度的生化物质检测以及基于人体体液的疾病的灵敏、客观检测诊断提供新方法和新思路。  相似文献   

5.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   

6.
7.
In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium–fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV–Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium‐sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium–fluoxetine–AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10‐4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and sensitive chemiluminescence (CL) method was developed for the determination of citalopram in pharmaceutical preparations and human plasma. The method is based on the enhancement of the weak CL signal of the luminol–H2O2 system. It was found that the CL signal arising from the reaction between alkaline luminol and H2O2 was greatly increased by the addition of silver nanoparticles in the presence of citalopram. Prepared silver nanoparticles (AgNPs) were characterized by UV–visible spectroscopy and transmission electron microscopy (TEM). Various experimental parameters affecting CL intensity were studied and optimized for the determination of citalopram. Under optimized experimental conditions, CL intensity was found to be proportional to the concentration of citalopram in the range 40–2500 ng/mL, with a correlation coefficient of 0.9997. The limit of detection (LOD) and limit of quantification (LOQ) of the devised method were 3.78 and 12.62 ng/mL, respectively. Furthermore, the developed method was found to have excellent reproducibility with a relative standard deviation (RSD) of 3.65% (n = 7). Potential interference by common excipients was also studied. The method was validated statistically using recovery studies and was successfully applied to the determination of citalopram in the pure form, in pharmaceutical preparations and in spiked human plasma samples. Percentage recoveries were found to range from 97.71 to 101.99% for the pure form, from 97.84 to 102.78% for pharmaceutical preparations and from 95.65 to 100.35% for spiked human plasma. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Flexible Zn‐based batteries are regarded as promising alternatives to flexible lithium‐ion batteries for wearable electronics owing to the natural advantages of zinc, such as environmental friendliness and low cost. In the past few years, flexible Zn‐based batteries have been studied intensively and exciting achievements have been obtained in this field. However, the development of flexible Zn‐based batteries is still at an early stage. The challenges of developing flexible lithium‐ion batteries are presented here. Then, a brief overview of recent progress in flexible zinc secondary batteries from the perspective of advanced materials and some issues that remain to be addressed are discussed.  相似文献   

10.
Aflatoxins are potential food pollutants produced by fungi. One of important toxins is aflatoxin M1 (AFM1). A great deal of concern is associated with AFM1 toxicity. In the present study, an innovative electrochemical interface for quantitation of AFM1 based on ternary signal amplification strategy was fabricated. In this work, silver nanoparticles was electrodeposited onto green and biocompatible nanocomposite containing α‐cyclodextrin as conductive matrix and graphene quantum dots as amplification element. Therefore, a multilayer film based on α‐cyclodextrin, graphene quantum dots, and silver nanoparticles was exploited to develop a highly sensitive electrochemical sensor for detection of AFM1. Fully electrochemical methodology was used to prepare a transducer on a glassy carbon electrode, which provided a high surface area toward sensitive detection of AFM1. The surface morphology of electrode surface was characterized by high‐resolution field emission scanning electron microscope. The proposed sensing platform provides a simple tool for AFM1 detection. Under optimized condition, the calibration curve for AFM1 concentration was linear in 0.015mM to 25mM with low limit of quantification of 2μM. The practical analytical utility of the modified electrode was illustrated by determination of AFM1 in unprocessed milk samples.  相似文献   

11.
Metal oxides synthesized by the solvothermal approach have widespread applications, while their nanostructure control remains challenging because their reaction mechanism is still not fully understood. Herein, it is demonstrated how the competitive relation between Ostwald ripening and surface charging during solvothermal synthesis is crucial to engineering high‐quality metal (oxide)–carbon nanomaterials. Using SnO2 as a case study, a new type of hollow SnO2–C hybrid nanoparticles is synthesized consisting of core–shell structured SnO2@C nanodots (which has not been previously reported). This new anode material exhibits extremely high lithium storage capacity of 1225 and 955 mAh g?1 at 200 and 500 mA g?1, respectively, and excellent cycling stability. In addition, full‐battery cells are constructed combining SnO2–C anode with Ni‐rich cathode, which can be charged to a higher voltage compared to commercial graphite anode and still demonstrate extraordinary rate performance. This study provides significant insight into the largely unexplored reaction mechanism during solvothermal synthesis, and demonstrates how such understanding can be used to achieve high‐performance metal (oxide)–C anodes for rechargeable batteries.  相似文献   

12.
Aqueous zinc‐ion batteries (AZIBs) have attracted considerable attention as promising next‐generation power sources because of the abundance, low cost, eco‐friendliness, and high security of Zn resources. Recently, vanadium‐based materials as cathodes in AZIBs have gained interest owing to their rich electrochemical interaction with Zn2+ and high theoretical capacity. However, existing AZIBs are still far from meeting commercial requirements. This article summarizes recent advances in the rational design of vanadium‐based materials toward AZIBs. In particular, it highlights various tactics that have been reported to increase the intercalation space, structural stability, and the diffusion ability of the guest Zn2+, as well as explores the structure‐dependent electrochemical performance and the corresponding energy storage mechanism. Furthermore, this article summarizes recent achievements in the optimization of aqueous electrolytes and Zn anodes to resolve the issues that remain with Zn anodes, including dendrite formation, passivation, corrosion, and the low coulombic efficiency of plating/stripping. The rationalization of these research findings can guide further investigations in the design of cathode/anode materials and electrolytes for next‐generation AZIBs.  相似文献   

13.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state‐of‐the‐art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energy‐based technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self‐powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve‐cell stimulating, orthodontic treatment and real‐time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed.  相似文献   

14.
15.
Fluorine substitution is a critical enabler for improving the cycle life and energy density of disordered rocksalt (DRX) Li‐ion battery cathode materials which offer prospects for high energy density cathodes, without the reliance on limited mineral resources. Due to the strong Li–F interaction, fluorine also is expected to modify the short‐range cation order in these materials which is critical for Li‐ion transport. In this work, density functional theory and Monte Carlo simulations are combined to investigate the impact of Li–F short‐range ordering on the formation of Li percolation and diffusion in DRX materials. The modeling reveals that F substitution is always beneficial at sufficiently high concentrations and can, surprisingly, even facilitate percolation in compounds without Li excess, giving them the ability to incorporate more transition metal redox capacity and thereby higher energy density. It is found that for F levels below 15%, its effect can be beneficial or disadvantageous depending on the intrinsic short‐range order in the unfluorinated oxide, while for high fluorination levels the effects are always beneficial. Using extensive simulations, a map is also presented showing the trade‐off between transition‐metal capacity, Li‐transport, and synthetic accessibility, and two of the more extreme predictions are experimentally confirmed.  相似文献   

16.
Molecular recognition displayed by naturally occurring receptors has continued to inspire new innovations aimed at developing systems that can mimic this natural phenomenon. Since 1930s, a technology called molecular imprinting for producing biomimetic receptors has been in place. In this technology, tailor made binding sites that selectively bind a given target analyte (also called template) are incorporated in a polymer matrix by polymerizing functional monomers and cross‐linking monomers around a target analyte followed by removal of the analyte to leave behind cavities specific to the analyte. The success of the imprinting process is defined by two main figures of merit, that is, the imprinting factor, and selectivity, which are determined by comparing the amount of target analyte or structural analogue bound by the molecularly imprinted polymer (MIP) and the nonimprinted polymer (NIP). NIP is a control synthesized alongside the MIP but in the absence of the template. However, questions arise on whether these figures of merit are reliable measures of the imprinting effect because of the significant differences between the MIP and the NIP in terms of their physical and chemical characteristics. Therefore, this review critically looks into this subject, with a view of defining the best approaches for determining the imprinting effect.  相似文献   

17.
Photo‐electrochemical (PEC) solar energy conversion offers the promise of low‐cost renewable fuel generation from abundant sunlight and water. In this Review, recent developments in photo‐electrochemical water splitting are discussed with respect to this promise. State‐of‐the‐art photo‐electrochemical device performance is put in context with the current understanding of the necessary requirements for cost‐effective solar hydrogen generation (in terms of solar‐to‐hydrogen conversion efficiency and system durability, in particular). Several important studies of photo‐electrochemical hydrogen generation at p‐type photocathodes are highlighted, mostly with protection layers (for enhanced durability), but also a few recent examples where protective layers are not needed. Recent work with the widely studied n‐type BiVO4 photoanode is detailed, which highlights the needs and necessities for the next big photoanode material yet to be discovered. The emerging new research direction of photo‐electrocatalytic upgrading of biomass substrates toward value‐added chemicals is then discussed, before closing with a commentary on how research on PEC materials remains a worthwhile endeavor.  相似文献   

18.
The rechargeable Li–O2 battery has attracted much attention over the past decades owing to its overwhelming advantage in theoretical specific energy density compared to state‐of‐the‐art Li‐ion batteries. Practical application requires non‐aqueous Li–O2 batteries to stably obtain high reversible capacity, which highly depends on a suitable electrolyte system. Up to now, some critical challenges remain in developing desirable non‐aqueous electrolytes for Li–O2 batteries. Herein, we will review the current status and challenges in non‐aqueous liquid electrolytes, ionic liquid electrolytes and solid‐state electrolytes of Li–O2 batteries, as well as the perspectives on these issues and future development.  相似文献   

19.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

20.
In this work, a propazine‐imprinted polymer was synthesized on the surface of modified magnetic nanoparticles to be used in the solid‐phase extraction of triazines in soil samples. The effect of different solvents on the selective extraction of target analytes was assessed to establish the optimum rebinding conditions. The obtained magnetic molecularly imprinted particles exhibited high selectivity for triazines and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid‐phase extraction method was developed allowing the extraction of several triazines (desisopropylatrazine, desethylatrazine, simazine, atrazine, and propazine) from soil samples and their subsequent final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the triazines studied were within the range 5.4% to 40.6%, with relative standard deviations lower than 7.0% (n = 3). The detection limits were within 0.1 to 3 ng g−1, depending upon the triazine and the type of soil used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号