首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypic plasticity, although ubiquitous, may not always be advantageous. Non‐adaptive plasticity is likely to occur in response to novel environmental stress. Anthropogenic contaminants, such as herbicides, are novel stressors that are not present in the evolutionary history of most species. We investigated the pattern and consequences of phenotypic plasticity induced by four glyphosate‐based herbicides (two terrestrial and two aquatic) in larvae of the spotted salamander, Ambystoma maculatum, by determining (1) whether the herbicides induced different morphologies; (2) if different morphologies translated to differences in burst swim performance; and (3) how induced individuals performed relative to non‐induced controls. Different herbicide formulations led to the production of significantly different head and tail morphologies, and tail morphology correlated with fastest escape speed. However, escape speed did not vary among treatments. In addition, three out of four herbicide treatments experienced accelerated growth rates, in terms of the lateral size of tails, although the tail shapes were either similar to preliminary controls or intermediate between preliminary and final controls. These observations suggest that herbicide‐induced morphology is a case of non‐adaptive phenotypic plasticity, and that there is potentially a trade‐off between growth and development for larvae exposed to different formulations. Understanding the functional significance of induced phenotypes is important for determining their importance in shaping an organism's ecological interactions and evolutionary trajectories. Furthermore, under different conditions, the morphological changes that we observed in response to exposure to herbicides might affect salamander fitness and influence population dynamics.  相似文献   

2.
Understanding population‐level responses to human‐induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic‐level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population‐level differences in morphology persisted in offspring but morphological variation compared with field‐collected individuals was limited to the head region. Populations demonstrated dissimilar flow‐induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.  相似文献   

3.
A central question in evolutionary biology is how coevolutionary history between predator and prey influences their interactions. Contemporary global change and range expansion of exotic organisms impose a great challenge for prey species, which are increasingly exposed to invading non‐native predators, with which they share no evolutionary history. Here, we complete a comprehensive survey of empirical studies of coevolved and naive predator?prey interactions to assess whether a shared evolutionary history with predators influences the magnitude of predator‐induced defenses mounted by prey. Using marine bivalves and gastropods as model prey, we found that coevolved prey and predator‐naive prey showed large discrepancies in magnitude of predator‐induced phenotypic plasticity. Although naive prey, predominantly among bivalve species, did exhibit some level of plasticity – prey exposed to native predators showed significantly larger amounts of phenotypic plasticity. We discuss these results and the implications they may have for native communities and ecosystems.  相似文献   

4.
Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host‐related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long‐term adaptation to novel conditions. Using experimental populations of the seed beetle that evolved on ancestral (common bean) or novel (chickpea) host and applying reciprocal transplant at both larval and adult stage on the alternative host plant, we studied the relationship between the initial (plastic) phases of host‐shift and the subsequent stages of evolutionary divergence in life‐history strategies between populations exposed to the host‐shift process. After 48 generations, populations became well adapted to chickpea by evolving the life‐history strategy with prolonged larval development, increased body mass, earlier reproduction, shorter lifespan and decreased plasticity of all traits compared with ancestral conditions. In chickpea‐adapted beetles, negative fitness consequences of low plasticity of pre‐adult development (revealed as severe decrease in egg‐to‐adult viability on beans) exhibited mismatch with positive effects of low plasticity (i.e. low host sensitivity) in oviposition and fecundity. In contrast, beetles adapted to the ancestral host showed high plasticity of developmental process, which enabled high larval survival on chickpea, whereas elevated plasticity in adult behaviour (i.e. high host sensitivity) resulted in delayed reproduction and decreased fecundity on chickpea. The analysis of population growth parameters revealed significant fluctuation during successive phases of the host‐shift process in A. obtectus.  相似文献   

5.
Climate change is imposing intensified and novel selection pressures on organisms by altering abiotic and biotic environmental conditions on Earth, but studies demonstrating genetic adaptation to climate change mediated selection are still scarce. Evidence is accumulating to indicate that both genetic and ecological constrains may often limit populations' abilities to adapt to large scale effects of climate warming. These constraints may predispose many organisms to respond to climate change with range shifts and phenotypic plasticity, rather than through evolutionary adaptation. In general, broad conclusions about the role of evolutionary adaptation in mitigating climate change induced fitness loss in the wild are as yet difficult to make. Editor's suggested further reading in BioEssays: How will fish that evolved at constant sub‐zero temperatures cope with global warming? Notothenioids as a case study Abstract  相似文献   

6.
Phenotypic plasticity might influence evolutionary processes such as adaptive radiations. Plasticity in parental care might be especially effective in facilitating adaptive radiations if it allows populations to persist in novel environments. Here, we test the hypothesis that behavioral plasticity by parents in response to predation risk facilitated the adaptive radiation of three‐spine sticklebacks. We compared the behavior of fathers across multiple ancestral (marine) and derived (freshwater) stickleback populations that differ in time since establishment. We measured behavioral plasticity in fathers in response to a predator found only in freshwater environments, simulating conditions marine males experience when colonizing freshwater. The antipredator behavior of males from newly established freshwater populations was intermediate between marine populations and well‐established freshwater populations. In contrast to our predictions, on average, there was greater behavioral plasticity in derived freshwater populations than in ancestral marine populations. However, we found greater individual variation in behavioral reaction norms in marine populations compared to well‐established freshwater populations, with newly established freshwater populations intermediate. This suggests that standing variation in behavioral reaction norms within ancestral populations might provide different evolutionary trajectories, and illustrates how plasticity can contribute to adaptive radiations.  相似文献   

7.
Oxidative stress and inflammation play important roles in the pathogenesis of cardiovascular disease (CVD). Oxidative stress‐induced desialylation is considered to be a primary step in atherogenic modification, and therefore, the attenuation of oxidative stress and/or inflammatory reactions may ameliorate CVD. In this study, quercetin 7‐O‐sialic acid (QA) was synthesized aiming to put together the cardiovascular protective effect of quercetin and the recently reported anti‐oxidant and anti‐atherosclerosis functions of N‐acetylneuraminic acid. The biological efficacy of QA was evaluated in vitro in various cellular models. The results demonstrated that 50 μM QA could effectively protect human umbilical vein endothelial cells (HUVEC, EA.hy926) against hydrogen peroxide‐ or oxidized low‐density lipoprotein‐induced oxidative damage by reducing the production of reactive oxygen species. QA attenuated hydrogen peroxide‐induced desialylation of HUVEC and lipoproteins. QA decreased lipopolysaccharide‐induced secretion of tumour necrosis factor‐α (TNF‐α) and monocyte chemoattractant protein‐1 (MCP‐1), and it significantly reduced the expression of intercellular adhesion molecule‐1, vascular cell adhesion molecule‐1, TNF‐α and MCP‐1. Furthermore, QA effectively promoted cholesterol efflux from Raw 264.7 macrophages to apolipoprotein A‐1 and high‐density lipoprotein by up‐regulating ATP‐binding cassette transporter A1 and G1, respectively. Results indicated that the novel compound QA exhibited a better capacity than quercetin for anti‐oxidation, anti‐inflammation, cholesterol efflux promotion and biomolecule protection against desialylation and therefore could be a candidate compound for the prevention or treatment of CVD.  相似文献   

8.
Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within‐generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial—for the evolutionary significance of transgenerational plasticity—but still unresolved questions. In this study, we investigated how the grand‐parental, parental and offspring exposures to predation cues shape the predator‐induced defences of offspring in the Physa acuta snail. We expected that the offspring phenotypes result from a three‐way interaction among grand‐parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand‐parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand‐parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand‐parental transgenerational plasticity and the within‐generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages.  相似文献   

9.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges.  相似文献   

10.
In a rapidly changing world, phenotypic plasticity may be a critical mechanism allowing populations to rapidly acclimate when faced with novel anthropogenic stressors. Theory predicts that if exposure to anthropogenic stress is heterogeneous, plasticity should be maintained as it allows organisms to avoid unnecessary expression of costly traits (i.e., phenotypic costs) when stressors are absent. Conversely, if exposure to stressors becomes constant, costs or limits of plasticity may lead to evolutionary trait canalization (i.e., genetic assimilation). While these concepts are well‐established in theory, few studies have examined whether these factors explain patterns of plasticity in natural populations facing anthropogenic stress. Using wild populations of wood frogs that vary in plasticity in tolerance to pesticides, the goal of this study was to evaluate the environmental conditions under which plasticity is expected to be advantageous or detrimental. We found that when pesticides were absent, more plastic populations exhibited lower pesticide tolerance and were more fit than less plastic populations, likely avoiding the cost of expressing high tolerance when it was not necessary. Contrary to our predictions, when pesticides were present, more plastic populations were as fit as less plastic populations, showing no signs of costs or limits of plasticity. Amidst unprecedented global change, understanding the factors shaping the evolution of plasticity will become increasingly important.  相似文献   

11.
12.
Zhiyin Song  Mian Wu 《The EMBO journal》2017,36(23):3483-3500
The tumor suppressor p53 is activated in response to cellular stress to prevent malignant transformation. However, several recent studies have shown that p53 can play protective roles in tumor cell survival under adversity. Whether p53‐regulated long noncoding RNAs are involved in this process remains to be fully understood. Here, we show that under glucose starvation condition, p53 directly upregulates a novel lncRNA named TRINGS (Tp53‐regulated inhibitor of necrosis under glucose starvation) in human tumor cells. TRINGS binds to STRAP and inhibits STRAP–GSK3β–NF‐κB necrotic signaling to protect tumor cells from cell death. Interestingly, TRINGS appears to respond to glucose starvation specifically, as it is not activated by serum, serine, or glutamine deprivation. Collectively, our findings reveal that p53‐induced lncRNA TRINGS controls the necrotic pathway and contributes to the survival of cancer cells harboring wild‐type p53 under glucose stress.  相似文献   

13.
The mammalian Sirt1 deacetylase is generally thought to be a nuclear protein, but some pilot studies have suggested that Sirt1 may also be involved in orchestrating nucleolar functions. Here, we show that nucleolar stress response is a ubiquitous cellular reaction that can be induced by different types of stress conditions, and Sirt1 is an endogenous suppressor of nucleolar stress response. Using stable isotope labeling by amino acids in cell culture approach, we have identified a physical interaction of between Sirt1 and the nucleolar protein nucleophosmin, and this protein–protein interaction appears to be necessary for Sirt1 inhibition on nucleolar stress, whereas the deacetylase activity of Sirt1 is not strictly required. Based on the reported prerequisite role of nucleolar stress response in stress‐induced p53 protein accumulation, we have also provided evidence suggesting that Sirt1‐mediated inhibition on nucleolar stress response may represent a novel mechanism by which Sirt1 can modulate intracellular p53 accumulation independent of lysine deacetylation. This process may represent an alternative mechanism by which Sirt1 regulates functions of the p53 pathway.  相似文献   

14.
We used an individual‐based simulation model to examine the role of phenotypic plasticity on persistence and adaptation to two patterns of environmental variation, a single, abrupt step change and continual, linear change. Our model tested the assumptions and predictions of the theory of genetic assimilation, explored the evolutionary dynamics of the Baldwin effect, and provided expectations for the evolutionary response to climate change. We found that genetic assimilation as originally postulated is not likely to occur because the replacement of plasticity by fixed genetic effects takes much longer than the environment is likely to remain stable. On the other hand, trait plasticity as an enhancement to continual evolutionary change may be an important evolutionary mechanism as long as plasticity has little or no costs. Whether or not plasticity helps or hinders evolutionary rescue following a step change in the environment depends on whether plasticity is costly. For linear environmental change, noncostly plasticity always decreases extinction rates, while costly plasticity can create a fitness drag and increase the chance of extinction. Thus, with changing climates plasticity can enhance adaptation and prevent extinction under some conditions, but not others.  相似文献   

15.
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate‐related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade‐off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change‐related range shifts and extinctions.  相似文献   

16.
Stressful stimuli induce two distinct cellular reactions, the heat‐shock (stress) response and programmed cell death. This study utilizes a dual procedure involving immunocytochemistry for heat‐shock protein localization and the terminal deoxynucleotidyl transferase‐mediated deoxyuridine triphosphate nick‐end labeling (TUNEL) assay for localization of cell death at the cellular level. Whole‐body hyperthermia resulted in cell death in the adult rat thymus and testis with a robust signal seen in the testis. Distinct populations of constitutively expressed Hsc70‐positive cells and TUNEL‐positive cells were apparent. Cellular layers that exhibited high levels of Hsc70 were not triggered into cell death by the thermal stress. High expression of Hsc70 was observed in neuronal populations in the dentate gyrus, CA1 and CA2 region of the hippocampus and Purkinje neurons of the cerebellum. Hyperthermia‐induced cell death was not observed in these neuronal cell types, suggesting that neuronal expression of constitutive Hsc70 may play roles in preprotecting neurons from stressful stimuli.  相似文献   

17.
18.
19.
A resurrection ecology reconstruction of 14 morphological, life history and behavioural traits revealed that a natural Daphnia magna population rapidly tracked changes in fish predation by integrating phenotypic plasticity and widespread evolutionary changes both in mean trait values and in trait plasticity. Increased fish predation mainly generated rapid adaptive evolution of plasticity (especially in the presence of maladaptive ancestral plasticity) resulting in an important change in the magnitude and direction of the multivariate reaction norm. Subsequent relaxation of the fish predation pressure resulted in reversed phenotypic plasticity and mainly caused evolution of the trait means towards the ancestral pre‐fish means. Relaxation from fish predation did, however, not result in a complete reversal to the ancestral fishless multivariate phenotype. Our study emphasises that the study population rapidly tracked environmental changes through a mosaic of plasticity, evolution of trait means and evolution of plasticity to generate integrated phenotypic changes in multiple traits.  相似文献   

20.
Many animal lineages exhibit allometry in sexual size dimorphism (SSD), known as ‘Rensch’s rule’. When applied to the interspecific level, this rule states that males are more evolutionary plastic in body size than females and that male‐biased SSD increases with body size. One of the explanations for the occurrence of Rensch’s rule is the differential‐plasticity hypothesis assuming that higher evolutionary plasticity in males is a consequence of larger sensitivity of male growth to environmental cues. We have confirmed the pattern consistent with Rensch’s rule among species of the gecko genus Paroedura and followed the ontogeny of SSD at three constant temperatures in a male‐larger species (Paroedura picta). In this species, males exhibited larger temperature‐induced phenotypic plasticity in final body size than females, and body size and SSD correlated across temperatures. This result supports the differential‐plasticity hypothesis and points to the role phenotypic plasticity plays in generating of evolutionary novelties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号