首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The change in photophysical properties of the organic molecule due to solvatochromic effect caused by different solvent environments at room temperature gives information about the dipole moments of 3‐N‐(N′‐methylacetamidino)benzanthrone (3‐MAB). The quantum yield, fluorescence lifetime of 3‐MAB was measured in different solvents to calculate radiative and non‐radiative rate constants. The results revealed that the excited state dipole moment (μe) is relatively larger compared to the ground state dipole moment (μg), indicating the excited state of the dye under study is more polar than the ground state and the same trend is noticed with theoretical calculations performed using the CAM‐B3LYP/6‐311+G(d,p) method. Further, the study on preferential solvation was carried out for 3‐MAB dye in ethyl acetate–methanol solvent mixture. The fluorescence quenching method has been employed for the detection of dopamine using 3‐MAB as fluorescent probe, using steady‐state and time resolved methods at room temperature. The method enables dopamine in the micro molar range to be detected. Also, an attempt to verify the quenching process by employing different models has been tried. Various rate parameters are measured using these models, our results indicates the quenching process is diffusion limited.  相似文献   

2.
The flavin-free azoreductase from Xenophilus azovorans KF46F (AzoB), which has been the very first characterized oxygen-tolerant azoreductase, was analyzed in comparison to various recently described flavin-containing azoreductases from different bacterial sources. Sequence comparisons demonstrated that the azoreductase from X. azovorans KF46F is a member of the NmrA family of proteins and demonstrates 30% sequence identity with a NADPH-dependent quinone oxidoreductase from Escherichia coli (encoded by ytfG). In contrast, it was found that the flavin-containing azoreductases from E. coli OY1-2 (AZR), Bacillus sp. OY1-2 (AZR) and related azoreductases all belong to the FMN_red superfamily of enzymes. The substrate specificity of AzoB was reanalyzed in respect to the recently characterized flavin-containing azoreductases, and it was found that purified AzoB converted in addition to different ortho-hydroxy azo compounds [such as Orange II = 1-(4′-sulfophenylazo)-2-naphthol] also the simple non-hydroxylated non-sulfonated azo dye Methyl Red (4′-dimethylaminoazobenzene-2-carboxylic acid), but no indications for the conversion of quinones were obtained. Significant differences were observed in the substrate specificities between AzoB and the flavin-containing azoreductases. The kinetic analysis of the turn-over of Orange II by AzoB suggested an ordered bireactant reaction mechanism which was different from the ping-pong mechanism suggested for the flavin-containing azoreductases.  相似文献   

3.
Previously reported azoreductase (AZR) from Rhodobacter sphaeroides AS1.1737 was shown to be a flavodoxin possessing nitroreductase and flavin mononucleotide (FMN) reductase activities. The structure model of AZR constructed with SWISS-MODEL displayed a flavodoxin-like fold with a three-layer α/β/α structure. With nitrofurazone as substrate, the optimal pH value and temperature were 7.0 and 50°C, respectively. AZR could reduce a number of nitroaromatic compounds including 2,4-dinitrotoluene, 2,6-dinitrotoluene, 3,5-dinitroaniline, and 2,4,6-trinitrotoluene (TNT). TNT resulted to be the most efficient nitro substrate and was reduced to hydroxylamino-dinitrotoluene. Both NADH and NADPH could serve as electron donors of AZR, where the latter was preferred. Externally added FMN was also reduced by AZR via ping-pong mechanism and was a competitive inhibitor of NADPH, methyl red, and nitrofurazone. AZR with broad substrate specificity is a member of a new nitro/FMN reductase family demonstrating potential application in bioremediation.  相似文献   

4.
5.
A simple, rapid and reproducible procedure for the identification of extracellular cucumber (Cucumis sativus L.) α‐galactosidase is described using callus cultures of seedlings from the tested plant, hairy roots of 2‐day‐old seedlings of cucumber germinating on agar plates as well as cell suspension cultures derived from callus cultures. For the determination of the intracellular and extracellular activities of α‐galactosidase, 6‐bromo‐2‐naphthyl‐αD‐galactopyranoside and p‐nitrophenyl‐αD‐galactopyranoside, respectively, were used as synthetic substrates. The extracellular α‐galactosidase activity was identified by evaluating the dye‐zones in agar medium. The enzyme from cucumber callus cultures and seedling roots, cultivated on agar plates supplemented with 6‐bromo‐2‐naphthyl‐αD‐galactopyranoside, hydrolyzed this substrate releasing 6‐bromo‐2‐naphthol. By simultaneous coupling with hexazonium p‐rosaniline the corresponding azodye was formed. Thus, the extracellular enzyme was detected by the presence of reddish‐brown zones on the agar plates around the plant material. The parallel extracellular and intracellular activities were determined in cell suspension cultures derived from callus cultures. The results show a 44.6% intracellular and 55.4% extracellular distribution of α‐galactosidase activity. The described agar plate method enables a rapid, simple and specific detection of plant producers of extracellular α‐galactosidase.  相似文献   

6.
Chen X  Yang H  Ge Y  Feng L  Jia J  Wang J 《Luminescence》2012,27(5):382-389
A series of novel 2‐aryl‐3‐ethoxycarbonyl‐4‐phenylpyrido[1,2‐a]benzimidazole derivatives were synthesized by the tandem reaction of 2‐benzoyl benzimidazole and (Z)‐ethyl 4‐bromo‐3‐arylbut‐2‐enoate in the presence of potassium carbonate. The compounds were characterized using IR, 1H‐NMR, 13C‐NMR, HRMS and the structure of 6f was further determined by X‐ray crystallography. Both absorption and fluorescence spectra characteristics of the compounds were investigated in acetonitrile and dichloromethane. The results showed that the absorption maxima of the compounds varied from 220 to 284 nm, depending on the structure of 2‐aryl group. The fluorescence results revealed that these compounds exhibited blue‐green fluorescence (463–475 nm) in dilute solutions and showed acceptable fluorescence quantum yields (ФPL = 0.13–0.73) in dichloromethane. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Three sulfonamide derivatives (SAD) were first synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfadimidine, sulfamethoxazole and sulfachloropyridazine sodium) and were characterized by elemental analysis, 1H NMR and MS. The interaction between bovine serum albumin (BSA) and SAD was studied using UV/vis absorption spectroscopy, fluorescence spectroscopy, time‐resolved fluorescence spectroscopy and circular dichroism spectra under imitated physiological conditions. The experimental results indicated that SAD effectively quenched the intrinsic fluorescence of BSA via a static quenching process. The thermodynamic parameters showed that hydrogen bonding and van der Waal's forces were the predominant intermolecular forces between BSA and two SADs [4‐((4‐(N‐(4,6‐dimethylpyrimidin‐2‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate and 4‐((4‐(N‐(5‐methylisoxazol‐3‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate], but hydrophobic forces played a major role in the binding process of BSA and 4‐((4‐(N‐(6‐chloropyridazin‐3‐yl)sulfamoyl)phenyl) carbamoyl)phenyl acetate. In addition, the effect of SAD on the conformation of BSA was investigated using synchronous fluorescence spectroscopy and circular dichroism spectra. Molecular modeling results showed that SAD was situated in subdomain IIA of BSA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The present study aimed to find out suitable conditions for the In vitro culture of Sallcornla europaea L. and to develop an efficient regeneration system. S. europaea plants were regenerated successfully In vitro from callus derived from mature embryos. Via the method of 2,4-dlchlorophenoxyacetlc acid (2,4-D)-short-treatment on mature seeds, callus was Induced from hypocotyls on the MS medium with 4.55 μmol/L N-phenyl-N'-1, 2, 3-thladlazol-5-yl urea (TDZ) 3-4 weeks after the seeds germinated. The callus differentiated Into shoots at a rate of 27.6% after subculture for one time on the same medium. When NaCl was Included In the medium, shoots were formed In cluster and the shoot differentiation frequency was Increased to 55.2%. The shoots were rooted when cultured on 1/2 MS medium supplemented with Indole-3-butyric acid (IBA), kinetin (KN) end activated charcoal (AC). The results Indicated that NeCl and TDZ played an Important role In the Improvement of the regeneration rate of the halophyte, S. europaea.  相似文献   

10.
Novel naphthalimide–poly(amidoamine) dendrimer fluorescent dyes were synthesized, and their structures were identified and confirmed using different characterization methods such as Fourier transform infrared, 1H NMR, 13C NMR, differential scanning calorimetry, elemental analysis and UV–vis spectroscopy. The spectrophotometric studies demonstrated absorption maxima (λmax) and extinction coefficient (εmax) values in the ranges of 429–438 nm and 25,635–88,618 L/mol/cm, respectively. The dyeing, fastness and antimicrobial properties of dyed wool fibers were examined. Colorimetric measurements demonstrated a greenish‐yellow hue with remarkable fluorescence intensity on dyed wool. Although the fastness properties of naphthalimide dye on wool fibers were poor/moderate, color fastness was appreciably improved through modification of the dye using dendrimers. The results revealed that the newly synthesized dyes are potent antimicrobial agents on wool fibers. Overall, it was deduced that poly(amidoamine) (PAMAM) dendrimers could be exploited as a promising tool in tailoring the different properties of naphthalimide dyes, being suitable for dyeing and antimicrobial finishing agents for wool fibers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Amino‐modified silica nanoparticles (FSNPs) doped with fluorescein isothiocyanate (FITC) were synthesized by using an aqueous core of reverse‐micelle microemulsion as the nanoreactor in an easy one‐pot method. Due to the FITC conjugating with (3‐aminopropyl)triethoxysilane (APTS), the nanoparticles prevent the FITC from leaching from the silica matrix when immersed in aqueous solution. SEM, FTIR, fluorescence lifetime, a photobleaching experiment and synchronous fluorescence spectra were used to characterize the FSNPs. The synchronous fluorescence signal of FSNPs was enhanced when trace amounts of γ‐globulin (γ‐G) were added. Under the optimal experimental conditions, the enhanced fluorescence intensity (ΔF) was linear with the concentration of γ‐G (c) in the range 0.3–4.8 µg/mL, with a detection limit of 0.04 µg/mL. The proposed method is simple, sensitive for the determination of trace amounts of γ‐G and used to determine the content of γ‐G in synthetic samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Poly(p‐pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor–acceptor repeat units were synthesized by a Pd‐catalyzed Sonogashira coupling reaction between diethynyl monomer and di‐iodopyridine for use as a pH‐responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT‐IR, 1H and 13C NMR, UV–visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red‐shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Uptake, metabolism and accumulation of N6‐benzyladenine (BA) and 1‐naphthaleneacetic acid (NAA) as well as changes in endogenous indole‐3‐acetic acid (IAA) and several isoprenoid‐type cytokinins (Cks) were characterized in two callus lines of Actinidia deliciosa cv. Hayward showing different growth and shoot organogenic responses to exogenously applied 2.7 µM NAA and 4.4 µM BA. Studies were carried out in callus 0, 1, 12, 24 and 48 h after the onset of their fifth subculture on a medium containing [3H]NAA or 8‐[14C]BA. Kiwifruit callus of line A presented high caulogenic response and lower growth that was positively associated with faster BA uptake, with transient accumulation of BA and isoprenoid‐type Cks, mainly zeatin, exceeding three‐ and four‐fold that of the non‐caulogenic callus, and with values of the BA/NAA ratio exceeding 1, in fact higher than the BA/NAA ratio in the culture medium. The accumulation of BA took place in both callus lines during the first 24 h of subculture and before the re‐initiating of callus proliferation. The higher growth and the low or null caulogenic response shown by line B callus were correlated with faster NAA uptake, with endogenous NAA levels two‐fold higher than in A calli, with higher IAA amounts and with values of the BA/NAA ratio below 1. Moreover, at 48 h free NAA in both kinds of callus reached levels close to those found after 35 days of subculture. Results suggest that temporal accumulation of BA and endogenous Cks is involved in the initiation of cell division leading to callus growth, whereas the maintenance of high NAA and IAA levels are related to the support of long‐term callus development. It also appears that for callus cells to become committed to shoot organogenesis, they must have a concentration of active Cks higher than a threshold value during the first 2 days of culture on fresh medium, while at the same time the concentration of auxins must not exceed a certain maximum.  相似文献   

14.
Pseudomonas sp. strain AZR1 and Klebsiella sp. strain AZR2 were isolated from reconstituted instant chocolate puddings that had turned green and were found to have azoreductase activity. This activity was inducible and NADH dependent. Differences in dye reduction rates between the two strains were apparent, and substrate specificity related to dye structure was observed.  相似文献   

15.
The effects of auxins and cytokinin on callus formation, growth and regeneration of Gracilaria tenuistipitata Chang et Xia and G. perplexa Byrne et Zuccarello (Gracilariales, Rhodophyta) are reported. Plant growth regulators (PGR) in concentrations ranging from 0.1 to 100.0 μmol of indole‐3‐acetic acid, 2,4‐dichlorophenoxyacetic acid (2,4‐D), and kinetin (K) were added to the ASP 12‐NTA solid medium (0.7% agar), and apical and intercalary segments (5 mm long) were inoculated as initial explants. K stimulated growth rates of intercalary segments of G. tenuistipitata in a linear relation, and 2,4‐D (1.0 μmol) and K (10.0 μmol) stimulated growth rates of apical and intercalary segments of G. perplexa, respectively. The simultaneous formation of apical, basal, and intermediate calluses is reported for the first time in axenic tissue cultures of red algae. With intercalary segments of G. tenuistipitata, basal callus induction rates were higher than those of apical and intermediate calluses in the majority of treatments, and auxins had stimulatory effects on the formation of all callus types. In apical segments of G. perplexa, intermediate callus formation was stimulated only by treatment with 1.0 μmol of K, while apical callus formation was stimulated by indole‐3‐acetic acid (1.0–10.0 μmol), 2,4‐D (10.0–100.0 μmol), or K (0.1 μmol). Intercalary segments of G. perplexa developed only intermediate calluses, and the majority of treatments with PGR stimulated higher rates than those presented by apical segments. Potential for regeneration (development of adventitious plantlets originated from callus cells) was higher in apical calluses than in basal and intermediate calluses developed in intercalary segments of G. tenuistipitata. Moreover, auxins and cytokinin were essential to the induction of regeneration in intermediate calluses, while specific concentrations stimulated regeneration from basal and apical calluses. Plant regeneration in G. perplexa was observed only after transferring calluses from solid to liquid medium, and the majority of treatments with PGR had stimulatory effects. Regenerating plants of G. perplexa developed tetrasporangia, and released tetraspores giving rise to adult gametophytes. Our results indicate that auxins and cytokinin have a regulatory role in the growth and morphogenesis in G. tenuistipitata and G. perplexa, and diversity of responses presented by both species is related to specific developmental systems.  相似文献   

16.
Complexation between the primary carrier of ligands in blood plasma, human serum transferrin (Tf), and a cyanine dye, 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐phenyl‐thiacarbocyanine‐triethylam monium salt (PTC) was investigated using fluorescence spectra, UV/Vis absorption spectra, synchronous fluorescence spectra, circular dichroism (CD) and molecular dynamic docking. The experimental results demonstrate that the formation of PTC–Tf complex is stabilized by van der Waal's interactions and hydrogen bonds, and the binding constants were found to be 8.55 × 106, 8.19 × 106 and 1.75 × 104 M?1. Moreover, fluorescence experiments prove that the operational mechanism for the fluorescence quenching is static quenching and non‐radiative energy transfer. Structural investigation of the PTC–Tf complexes via synchronous fluorescence spectra and CD showed that the structure of Tf became more stable with a major increase in the α‐helix content and increased polarity around the tryptophan residues after PTC binding. In addition, molecular modeling highlights the residues located in the N‐lobe, which retain high affinity for PTC. The mode of action of the PTC–Tf complex is illustrated by these results, and may provide an effective pathway for the transport and targeted delivery of antitumor agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In comparative fluorescence gel electrophoresis experiments, cross‐talk was detected. It was traced back to a failure in the quenching process in typical labelling protocols. Despite a huge excess of potential reaction sites for the N‐hydroxy‐succinimide–ester‐coupled dye, sufficient active dye molecules were available after the quenching step to label protein molecules un‐specifically. It could be shown that only a 100‐fold increase in the amount of quencher will silence residual dye to such an extent that no artificial signals are detected.  相似文献   

18.
The synthesis and initial evaluation of a new dye‐functionalized crown‐ether, 2‐[2‐(2,3,5,6,8,9,11,12,14,15‐decahydro‐1,4,7,10,13,16‐benzohexaoxacyclooctadecin)ethenyl]‐3‐methyl benzothiazolium iodide (denoted BSD), are reported. This molecule contains a benzyl 18‐crown‐6 moiety as the ionophore and a benzothiazolium to spectrally transduce ion binding. Binding of K+ to BSD in methanol causes shifts in the both absorbance and fluorescence emission maxima, as well as changes in the molar absorptivity and the emission intensity. Apparent dissociation constants (Kd) in the range 30–65 µ m were measured. In water and neutral buffer, Kd values were approximately 1 m m . BSD was entrapped in sol–gel films composed of methyltriethoxysilane (MTES) and tetraethylorthosilicate (TEOS) with retention of its spectral properties and minimal leaching. K+ binding to BSD in sol–gel films immersed in pH 7.4 buffer causes significant fluorescence quenching, with an apparent response time of approximately 2 min and an apparent Kd of 1.5 m m . Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Three sodium salts of (2E)‐3‐(4'‐halophenyl)prop‐2‐enoyl sulfachloropyrazine (CCSCP) were synthesized and their structures were determined by 1H and 13C NMR, LC‐MS and IR. The binding properties between CCSCPs and bovine serum albumin (BSA) were studied using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results indicate that the fluorescence quenching mechanisms between BSA and CCSCPs were static quenching at low concentrations of CCSCPs or combined quenching (static and dynamic) at higher CCSCP concentrations of 298, 303 and 308 K. The binding constants, binding sites and corresponding thermodynamic parameters (ΔH, ΔS, ΔG) were calculated at different temperatures. All ΔG values were negative, which revealed that the binding processes were spontaneous. Although all CCSCPs had negative ΔH and positive ΔS, the contributions of ΔH and ΔS to ΔG values were different. When the 4'‐substituent was fluorine or chlorine, van der Waals interactions and hydrogen bonds were the main interaction forces. However, when the halogen was bromine, ionic interaction and proton transfer controlled the overall energetics. The binding distances between CCSCPs and BSA were determined using the Förster non‐radiation energy transfer theory and the effects of CCSCPs on the conformation of BSA were analyzed by synchronous fluorescence spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Aims: To simplify the determination of the nuclear condition of the pathogenic Rhizoctonia, which currently needs to be performed either using two fluorescent dyes, thus more costly and time‐consuming, or using only one fluorescent dye, thus less accurate. Methods and Results: A red primary fluorescence (autofluorescence) of the hyphal cell walls and septa of Rhizoctonia spp. with green excitation is evidenced in Rhizoctonia spp. This property is exploited and combined for the first time with a conventional DAPI fluorescence to accurately determine the nuclear condition of Rhizoctonia. This bi‐fluorescence imaging strategy depicted the nuclear condition in Rhizoctonia spp. more accurately than the conventional DAPI fluorescence used alone and was validated against isolates previously genotyped by DNA sequencing. Conclusions: We demonstrated that the bi‐fluorescence imaging strategy was safe, accurate and simple to perform and interpret. Significance and Impact of the Study: The developed bi‐fluorescence imaging strategy provides a sensitive tool for determining the nuclear condition of Rhizoctonia strains. Its simplicity is a key advantage when there are numerous cultures to be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号