首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of hybrid arylisoxazole‐chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase (ChE) inhibitory activity based on the modified Ellman's method. Among synthesized compounds, 5‐(3‐nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide depicted the most acetylcholinesterase (AChE) inhibitory activity (IC50=1.23 μm ) and 5‐(3‐chlorophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide was found to be the most potent butyrylcholinesterase (BChE) inhibitor (IC50=9.71 μm ). 5‐(3‐Nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide was further investigated for its BACE1 inhibitory activity as well as neuroprotectivity and metal chelating ability as important factors involved in onset and progress of Alzheimer's disease. It could inhibit BACE1 by 48.46 % at 50 μm . It also showed 6.4 % protection at 25 μm and satisfactory chelating ability toward Zn2+, Fe2+, and Cu2+ ions. Docking studies of 5‐(3‐nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide and 5‐(3‐chlorophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide confirmed desired interactions with those amino acid residues of the AChE and BChE, respectively.  相似文献   

2.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   

3.
A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC50 = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC50 for AChE = 0.16 µM and IC50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC50 for AChE = 0.59 µM and IC50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

4.
Alzheimer's disease (AD) is a well‐known neurodegenerative disorder affecting millions of old people worldwide and the corresponding epidemiological data emphasize the importance of the disease. As AD is a multifactorial illness, various single target directed drugs that have reached clinical trials have failed. Therefore, various factors associated with outset of AD have been considered in targeted drug discovery. In this work, various benzochromenoquinolinones were synthesized and evaluated for their cholinesterase and BACE1 inhibitory activities as well as neuroprotective and metal‐chelating properties. Among the synthesized compounds, 14‐amino‐13‐(3‐nitrophenyl)‐2,3,4,13‐tetrahydro‐1H‐benzo[6,7]chromeno[2,3‐b]quinoline‐7,12‐dione ( 6m ) depicted the best inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.86 and 6.03 μm , respectively. Also, the compound could inhibit β‐secretase 1 (BACE1) with IC50=19.60 μm and showed metal chelating ability toward Cu2+, Fe2+, and Zn2+. In addition, docking study demonstrated desirable interactions of compound 6m with amino acid residues characterizing AChE, BChE, and BACE1.  相似文献   

5.
From the aerial parts of Salsola oppositofolia, S. soda and S. tragus an alkaloid extract was obtained and tested to evaluate antioxidant and anti-cholinesterase activities. The in vitro study of the antioxidant activity by the DPPH method revealed a significant activity of Salsola alkaloid extracts with IC50 values ranging from 16.30 μg/mL for S. oppositifolia to 26.17 μg/mL for S. tragus. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. S. tragus alkaloid extract exerted the highest inhibitory activity against AChE (IC50 of 30.2 μg/mL) and BChE (IC50 of 26.5 μg/mL). Interestingly, S. soda and S. oppositifolia exhibited a selective inhibitory activity against BChE with IC50 values of 34.3 μg/mL and 32.7 μg/mL, respectively. Tetrahydroisoquinoline alkaloids were identified and quantified by GC/MS analysis.  相似文献   

6.
Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl‐ and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50=141.60±3.39 μm ) and hyuganin C (IC50=38.86±1.69 μm ) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50=46.58±0.91 μm ) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.  相似文献   

7.
A novel series of tacrine based cyclopentapyranopyridine- and tetrahydropyranoquinoline-kojic acid derivatives were designed, synthesized, and evaluated as anti-cholinesterase agents. The chemical structures of all target compounds were characterized by 1H-NMR, 13C-NMR, and elemental analyses. The synthesized compounds mostly inhibited acetylcholinesterase enzyme (AChE) with IC50 values of 4.18–48.71 μM rather than butyrylcholinesterase enzyme (BChE) with IC50 values of >100 μM. Among them, cyclopentapyranopyridine-kojic acid derivatives showed slightly better AChE inhibitory activity compared to tetrahydropyranoquinoline-kojic acid. The compound 10-amino-2-(hydroxymethyl)-11-(4-isopropylphenyl)-7,8,9,11-tetrahydro-4H-cyclopenta[b]pyrano[2′,3′ : 5,6]pyrano[3,2-e]pyridin-4-one ( 6f ) bearing 4-isopropylphenyl moiety and cyclopentane ring exhibited the highest anti-AChE activity with IC50 value of 4.18 μM. The kinetic study indicated that the compound 6f acts as a mixed inhibitor and the molecular docking studies also illustrated that the compound 6f binds to both the catalytic site (CS) and peripheral anionic site (PAS) of AChE. The compound 6f showed moderate neuroprotective properties against H2O2-induced cytotoxicity in PC12 cells. The theoretical ADME study also predicted good drug-likeness for the compound 6f . Based on these results, the compound 6f seems to be a very promising AChE inhibitor for the treatment of Alzheimer's disease.  相似文献   

8.
A series of 2-acetylphenol-donepezil hybrids was designed and synthesized based on multi-target-directed ligands strategy. The biological activities were evaluated by AChE/BChE inhibition and MAO-A/MAO-B inhibition. The results revealed that the tertiary amines and methylene chain length significantly affected the eeAChE inhibitory potency, in particular, compound TM-14 showed the best eeAChE inhibitory activity with IC50 value of 2.9 μM, in addition, both kinetic analysis of AChE inhibition and docking study displayed that TM-14 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. Moreover, compound TM-14 was a selective metal chelator and could form 1:1 TM-14-Cu2+ complex. The structure-active-relationship also indicated that the O-alkylamine fragment remarkably decreased hMAO-B inhibitory activity, compound TM-2 exhibited potent hMAO-B inhibitory activity (IC50 = 6.8 μM), which was supported by the molecular docking study. More interestingly, compounds TM-14 and TM-2 could cross the blood-brain barrier in vitro. Therefore, the structure-active-relationship of 2-acetylphenol-donepezil hybrids could encourage the development of multifunction agents with selective AChE inhibition or selective MAO-B inhibition for the treatment of Alzheimer’s disease.  相似文献   

9.
Two series of novel coumarin derivatives, substituted at 3 and 7 positions with aminoalkoxy groups, are synthesized, characterized, and screened. The effect of amine substituents and the length of cross‐linker are investigated in acetyl‐ and butyrylcholinesterase (AChE and BuChE) inhibition. Target compounds show moderate to potent inhibitory activities against AChE and BuChE. 3‐(3,4‐Dichlorophenyl)‐7‐[4‐(diethylamino)butoxy]‐2H‐chromen‐2‐one ( 4y ) is identified as the most potent compound against AChE (IC50=0.27 μm ). Kinetic and molecular modeling studies affirmed that compound 4y works in a mixed‐type way and interacts simultaneously with the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. In addition, compound 4y blocks β‐amyloid (Aβ) self‐aggregation with a ratio of 44.11 % at 100 μm and significantly protects PC12 cells from H2O2‐damage in a dose‐dependent manner.  相似文献   

10.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   

11.
A series of benzamide and picolinamide derivatives containing dimethylamine side chain (4a4c and 7a7i) were synthesised and evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity in vitro. Structure–activity relationship investigation revealed that the substituted position of dimethylamine side chain markedly influenced the inhibitory activity and selectivity against AChE and BChE. In addition, it seemed that the bioactivity of picolinamide amide derivatives was stronger than that of benzamide derivatives. Among them, compound 7a revealed the most potent AChE inhibitory activity (IC50: 2.49?±?0.19?μM) and the highest selectivity against AChE over BChE (Ratio: 99.40). Enzyme kinetic study indicated that compound 7a show a mixed-type inhibition against AChE. The molecular docking study revealed that this compound can bind with both the catalytic site and the peripheral site of AChE.  相似文献   

12.
A series of 4-dimethylamine flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential multi-functional anti-Alzheimer agents. The results showed that most of the synthesized compounds exhibited high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity at the micromolar range (IC50, 1.83–33.20 μM for AChE and 0.82–11.45 μM for BChE). A Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5j with AChE, and molecular modeling study showed that 5j targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, the derivatives showed potent self-induced Aβ aggregation inhibitory activity at 20 μM with percentage from 25% to 48%. In addition, some compounds (5j5q) showed potent oxygen radical absorbance capacity (ORAC) ranging from 1.5- to 2.6-fold of the Trolox value. These compounds should be further investigated as multi-potent agents for the treatment of Alzheimer’s disease.  相似文献   

13.
A series of new indole-3-acetic acid (IAA)-tacrine hybrids as dual acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) inhibitors were designed and prepared based on the molecular docking mode of AChE with an IAA derivative (1a), a moderate AChE inhibitor identified by screening our compound library for anti-Alzheimer’s disease (AD) drug leads. The enzyme assay results revealed that some hybrids, e.g. 5d and 5e, displayed potent dual in vitro inhibitory activities against AChE/BChE with IC50 values in low nanomolar range. Molecular modeling studies in tandem with kinetic analysis suggest that these hybrids target both catalytic active site and peripheral anionic site of cholinesterase (ChE). Molecular dynamic simulations and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations indicate that 5e has more potent binding affinity than hit 1a, which may explain the stronger inhibitory effect of 5e on AChE. Furthermore, their predicted pharmacokinetic properties and in vitro influences on mouse brain neural network electrical activity were discussed. Taken together, compound 5e can be highlighted as a lead compound worthy of further optimization for designing new anti-AD drugs.  相似文献   

14.
A novel series of N-benzylpyridinium moiety linked to arylisoxazole ring were designed, synthesized, and evaluated for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Synthesized compounds were classified into two series of 5a-i and 5j-q considering the position of positively charged nitrogen of pyridinium moiety (3- or 4- position, respectively) connected to isoxazole carboxamide group. Among the synthesized compounds, compound 5n from the second series of compounds possessing 2,4-dichloroaryl group connected to isoxazole ring was found to be the most potent AChE inhibitor (IC50 = 5.96 µM) and compound 5j also from the same series of compounds containing phenyl group connected to isoxazole ring demonstrated the most promising inhibitory activity against BChE (IC50 = 0.32 µM). Also, kinetic study demonstrated competitive inhibition mode for both AChE and BChE inhibitory activity. Docking study was also performed for those compounds and desired interactions with those active site amino acid residues were confirmed through hydrogen bonding as well as π-π and π-anion interactions. In addition, the most potent compounds were tested against BACE1 and their neuroprotectivity on Aβ-treated neurotoxicity in PC12 cells which depicted negligible activity. It should be noted that most of the synthesized compounds from both categories 5a-i and 5j-q showed a significant selectivity toward BChE. However, series 5j-q were more active toward AChE than series 5a-i.  相似文献   

15.
Vascular endothelial growth factor receptor‐2 (VEGFR‐2) plays an important role in both vasculogenesis and angiogenesis. Inhibition of VEGFR‐2 has been demonstrated as a key method against tumor‐associated angiogenesis. Thiazolopyrimidine is an important analog of the purine ring, and we choose the thiazolopyrimidine scaffold as the mother nucleus. Two series of thiazolo[5,4‐d]pyrimidine derivatives were synthesized and evaluated for their antiproliferative activity. In HUVEC inhibition assay, compounds 3l (=1‐(5‐{[2‐(4‐chlorophenyl)‐5‐methyl[1,3]thiazolo[5,4‐d]pyrimidin‐7‐yl]amino}pyridin‐2‐yl)‐3‐(3,4‐dimethylphenyl)urea) and 3m (=1‐(5‐{[2‐(4‐chlorophenyl)‐5‐methyl[1,3]thiazolo[5,4‐d]pyrimidin‐7‐yl]amino}pyridin‐2‐yl)‐3‐(4‐methoxyphenyl)urea) exhibited the most potent inhibitory effect (IC50=1.65 and 3.52 μm , respectively). Compound 3l also showed the best potency against VEGFR‐2 at 50 μm (98.5 %). These results suggest that further investigation of compound 3l might provide potential angiogenesis inhibitors.  相似文献   

16.
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin‐4(3H)‐ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI?H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N‐hydroxy‐7‐(7‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5b ) and N‐hydroxy‐7‐(6‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5c ) (IC50 values, 0.10–0.16 μm ) were found to be approximately 30‐fold more cytotoxic than SAHA (IC50 values of 3.29–3.67 μm ). N‐Hydroxy‐7‐(4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5a ; IC50 values of 0.21–0.38 μm ) was approximately 10‐ to 15‐fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub‐micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c , strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.  相似文献   

17.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

18.
A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64 μM for AChE and 0.42 μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a5r) did not affect PC12 and HepG2 cell viability at the concentration of 10 μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer’s disease.  相似文献   

19.
A series of 3,4-dihydroquinazoline derivatives consisting of the selected compounds from our chemical library on the diversity basis and the new synthetic compounds were in vitro tested for their inhibitory activities for both acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) enzymes. It was discovered that most of the compounds displayed weak AChE and strong BuChE inhibitory activities. In particular, compound 8b and 8d were the most active compounds in the series against BChE with IC50 values of 45 nM and 62 nM, as well as 146- and 161-fold higher affinity to BChE, respectively. To understand the excellent activity of these compounds, molecular docking simulations were performed to get better insights into the mechanism of binding of 3,4-dihydroquinazoline derivatives. As expected, compound 8b and 8d bind to both catalytic anionic site (CAS) and peripheral site (PS) of BChE with better interaction energy values than AChE, in agreement with our experimental data. Furthermore, the non-competitive/mixed-type inhibitions of both compounds further confirmed their dual binding nature in kinetic studies.  相似文献   

20.
A novel series of benzimidazole‐1,2,3‐triazole hybrids containing substituted benzyl moieties were designed, synthesized and evaluated for their inhibitory activity against mushroom tyrosinase. The results indicated that 2‐(4‐{[1‐(3,4‐dichlorobenzyl)‐1H‐1,2,3‐triazol‐4‐yl]methoxy}phenyl)‐1H‐benzimidazole ( 6g ) and 2‐(4‐{[1‐(4‐bromobenzyl)‐1H‐1,2,3‐triazol‐4‐yl]methoxy}phenyl)‐1H‐benzimidazole ( 6h ) exhibited effective inhibitory activity with IC50 values of 9.42 and 10.34 μm , respectively, comparable to that of kojic acid as the reference drug (IC50 = 9.28 μm ). Kinetic study of compound 6g confirmed mixed‐type inhibitory activity towards tyrosinase indicating that it can bind to free enzyme as well as enzyme‐substrate complex. Also, molecular docking analysis was performed to determine the binding mode of the most potent compounds ( 6g and 6h ) in the active site of tyrosinase. Consequently, 6g and 6h derivatives might serve as promising candidates in cosmetics, medicine or food industry, and development of such compounds may be of an interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号