首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report a colorimetric sensor for the rapid, selective detection of ascorbic acid (AA) in aqueous solutions. Single‐layered MnO2 nanosheets were established as an artificial oxidase; consequently colorless 3,3´,5,5´‐tetramethylbenzidine (TMB) was oxidized to a blue product (oxTMB), with increase in absorbance at 650 nm. The absorbance of the reaction system decreased after introduction AA, which reduced MnO2 into Mn2+. Under optimum conditions, a detection limit of 62.81 nM for AA in aqueous solutions could be achieved. The linear response range for AA was 0.25–30 μM with a correlation coefficient of 0.996. Importantly, the MnO2 nanosheet–TMB chromogenic reaction exhibited great selectivity as there was no interference from other metal ions, amino acids and small biological molecules. The proposed colorimetric sensing of AA could be applied for fruit, juice and pharmaceutical samples. Moreover, the proposed sensor showed satisfying performance, including low cost, easy preparation, rapid detection, and good biocompatibility.  相似文献   

2.
吴琦  容杰  单志  陈惠  杨婉身 《生物工程学报》2009,25(12):1976-1982
采用化学共沉淀法合成10nm的Fe3O4磁性纳米粒子(MNPs)。以辣根过氧化物酶(HRP)为对照,研究了四氢呋喃、1,4-二氧六环、丙酮、N,N-二甲基酰胺、甲醇和二甲亚砜等6种水溶性有机溶剂对Fe3O4MNPs过氧化物酶样活性的影响。结果表明,在有机溶剂浓度(V/V)为30%~75%时,Fe3O4MNPs相对酶活力迅速下降至近于完全失活。在15%有机溶液中,Fe3O4MNPs的最适反应温度多为50oC,最适反应pH在3.6左右。经15%有机溶液处理后的水相反应酶活显示,Fe3O4MNPs表现出对有机溶剂较强的热稳定性和pH稳定性,且对75%有机溶液也具有良好的稳定性。以上多数性质均优于相同条件下的HRP组,表明Fe3O4MNPs是一种比HRP对水溶性有机溶剂更稳定的过氧化物酶。由于Fe3O4MNPs具有易制备、成本低、易于磁分离和可循环使用的特点,因此其具有替代HRP用于有机催化的应用潜力。  相似文献   

3.
Aqueous rechargeable Ni‐Fe batteries featuring an ultra‐flat discharge plateau, low cost, and outstanding safety characteristics show promising prospects for application in wearable energy storage. In particular, fiber‐shaped Ni‐Fe batteries will enable textile‐based energy supply for wearable electronics. However, the development of fiber‐shaped Ni‐Fe batteries is currently challenged by the performance of fibrous Fe‐based anode materials. In this context, this study describes the fabrication of sulfur‐doped Fe2O3 nanowire arrays (S‐Fe2O3 NWAs) grown on carbon nanotube fibers (CNTFs) as an innovative anode material (S‐Fe2O3 NWAs/CNTF). Encouragingly, first‐principle calculations reveal that S‐doping in Fe2O3 can dramatically reduce the band gap from 2.34 to 1.18 eV and thus enhance electronic conductivity. The novel developed S‐Fe2O3 NWAs/CNTF electrode is further demonstrated to deliver a very high capacity of 0.81 mAh cm?2 at 4 mA cm?2. This value is almost sixfold higher than that of the pristine Fe2O3 NWAs/CNTF electrode. When a cathode containing zinc‐nickel‐cobalt oxide (ZNCO)@Ni(OH)2 NWAs heterostructures is used, 0.46 mAh cm?2 capacity and 67.32 mWh cm?3 energy density are obtained for quasi‐solid‐state fiber‐shaped NiCo‐Fe batteries, which outperform most state‐of‐the‐art fiber‐shaped aqueous rechargeable batteries. These findings offer an innovative and feasible route to design high‐performance Fe‐based anodes and may inspire new development for the next‐generation wearable Ni‐Fe batteries.  相似文献   

4.
采用硅烷化试剂Si(OC2H5)3C3H6NH2(APTES)对纳米Fe3O4颗粒表面进行氨基化改性后, 考察了不同浓度偶联剂戊二醛对于颗粒表面固定牛血清白蛋白(BSA)量的影响。此超顺磁性免疫铁颗粒(SPIO)加入兔抗BSA血清中特异性结合BSA抗体后, 用Gly-HCl缓冲液洗脱得到IgG。结果表明当戊二醛浓度大于10%时, 单位颗粒固定蛋白的量达到最大值约140 mg/mg, 10 min, 15 mg的SPIO即可将1 mL抗血清完全分离, 经过两次快速洗脱, 颗粒表面吸附的抗体即可得到纯化; 琼脂扩散实验表明分离后的抗体仍保持较高活性, SDS-PAGE电泳结果表明用此方法纯化后的兔抗BSA IgG纯度大于99%, 比传统的(NH4)2SO4法有了较大提高, 但纯化量并没有减少; SPIO在经过五次重复利用后仍能保持78%以上的分离效果。  相似文献   

5.
Biodesulfurization (BDS) of dibenzothiophene (DBT) was carried out by Rhodococcus erythropolis IGST8 decorated with magnetic Fe3O4 nanoparticles, synthesized in‐house by a chemical method, with an average size of 45–50 nm, in order to facilitate the post‐reaction separation of the bacteria from the reaction mixture. Scanning electron microscopy (SEM) showed that the magnetic nanoparticles substantially coated the surfaces of the bacteria. It was found that the decorated cells had a 56% higher DBT desulfurization activity in basic salt medium (BSM) compared to the nondecorated cells. We propose that this is due to permeabilization of the bacterial membrane, facilitating the entry and exit of reactant and product, respectively. Model experiments with black lipid membranes (BLM) demonstrated that the nanoparticles indeed enhance membrane permeability. Biotechnol. Bioeng. 2009;102: 1505–1512. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
This study reports a sensitive and selective colorimetric approach for the analysis of dopamine (DA) based on CeO2@ZIF-8/Cu-CDs laccase-like nanozymes activity. The CeO2@ZIF-8/Cu-CDs was synthesized using cerium oxide (CeO2) and copper-doped carbon dots (Cu-CDs) with 2-methylimidazole by a facilely hydrothermal approach. The CeO2@ZIF-8/Cu-CDs exhibited excellent laccase-like nanozymes activity and can oxidize the colorless substrate (DA) to red product with 4-aminoantipyrine as the chromogenic agent. The Michaelis–Menten constant (Km) and the maximal velocity (Vmax) of CeO2@ZIF-8/Cu-CDs are 0.20 mM and 1.48 μM/min, respectively. The detection method has a linear range of 0.05–7.5 μg/mL and a detection limit as low as 8.5 ng/mL with good reproducibility. The developed colorimetric sensor was applied to rapid and precise quantitative evaluation of DA levels in serum and urine samples. This study presents a new approach for detecting biological molecules by utilizing the controlled regulation of nanozymes' laccase-like activity.  相似文献   

7.
In this paper, a novel freestanding core‐branch negative and positive electrode material through integrating trim aligned Fe2O3 nanoneedle arrays (Fe2O3 NNAs) is first proposed with typical mesoporous structures and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays (NiCo2O4/Ni(OH)2 HNAs) on SiC nanowire (SiC NW) skeletons with outstanding resistance to oxidation and corrosion, good conductivity, and large‐specific surface area. The original built SiC NWs@Fe2O3 NNAs is validated to be a highly capacitive negative electrode (721 F g?1 at 2 A g?1, i.e., 1 F cm?2 at 2.8 mA cm?2), matching well with the similarly constructed SiC NWs@NiCo2O4/Ni(OH)2 HNAs positive electrode (2580 F g?1 at 4 A g?1, i.e., 3.12 F cm?2 at 4.8 mA cm?2). Contributed by the uniquely engineered electrodes, a high‐performance asymmetric supercapacitor (ASC) is developed, which can exhibit a maximum energy density of 103 W h kg?1 at a power density of 3.5 kW kg?1, even when charging the device within 6.5 s, the energy density can still maintain as high as 45 W h kg?1 at 26.1 kW kg?1, and the ASC manifests long cycling lifespan with 86.6% capacitance retention even after 5000 cycles. This pioneering work not only offers an attractive strategy for rational construction of high‐performance SiC NW‐based nanostructured electrodes materials, but also provides a fresh route for manufacturing next‐generation high‐energy storage and conversion systems.  相似文献   

8.
Self‐assembled vertical heterostructure with a high interface‐to‐volume ratio offers tremendous opportunities to realize intriguing properties and advanced modulation of functionalities. Here, a heterostructure composed of two visible‐light photocatalysts, BiFeO3 (BFO) and ε‐Fe2O3 (ε‐FO), is designed to investigate its photoelectrochemical performance. The structural characterization of the BFO‐FO heterostructures confirms the phase separation with BFO nanopillars embedded in the ε‐FO matrix. The investigation of band structure of the heterojunction suggests the assistance of photoexcited carrier separation, leading to an enhanced photoelectrochemical performance. The insights into the charge separation are further revealed by means of ultrafast dynamics and electrochemical impedance spectroscopies. This work shows a delicate design of the self‐assembled vertical heteroepitaxy by taking advantage of the intimate contact between two phases that can lead to a tunable charge interaction, providing a new configuration for the optimization of photoelectrochemical cell.  相似文献   

9.
10.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

11.
Hierarchical hollow NiCo2S4 microspheres with a tunable interior architecture are synthesized by a facile and cost‐effective hydrothermal method, and used as a cathode material. A three‐dimensional (3D) porous reduced graphene oxide/Fe2O3 composite (rGO/Fe2O3) with precisely controlled particle size and morphology is successfully prepared through a scalable facile approach, with well‐dispersed Fe2O3 nanoparticles decorating the surface of rGO sheets. The fixed Fe2O3 nanoparticles in graphene efficiently prevent the intermediates during the redox reaction from dissolving into the electrolyte, resulting in long cycle life. KOH activation of the rGO/Fe2O3 composite is conducted for the preparation of an activated carbon material–based hybrid to transform into a 3D porous carbon material–based hybrid. An energy storage device consisting of hollow NiCo2S4 microspheres as the positive electrode, the 3D porous rGO/Fe2O3 composite as the negative electrode, and KOH solution as the electrolyte with a maximum energy density of 61.7 W h kg?1 is achieved owing to its wide operating voltage range of 0–1.75 V and the designed 3D structure. Moreover, the device exhibits a high power density of 22 kW kg?1 and a long cycle life with 90% retention after 1000 cycles at the current density of 1 A g?1.  相似文献   

12.
生物反硝化是目前废水深度处理中应用最为广泛的硝酸盐氮处理技术,但该方法一般停留时间较长,在冬季因低温处理效果欠佳,因此有必要开发反硝化强化技术。以施氏假单胞菌Pseudomonas stutzeri为研究对象,考察了不同投加量下Fe3O4对P. stutzeri反硝化过程的影响。结果显示当Fe3O4投加量由0 mg/L增至4 000 mg/L时,硝酸盐氮最大比降解速率由18.0 h–1增加至23.7 h–1,体系中的总蛋白含量以及细菌体内的铁含量显著增加。RT-qPCR和非标记 (Label-free) 定量蛋白组学分析表明,投加4 000 mg/L Fe3O4体系中的P. stutzeri,其反硝化功能基因napA、narJ、nirB、norR、nosZ表达量分别提高了55.7%、24.9%、24.5%、36.5%、120%,对应反硝化还原酶Nap、Nar、Nir、Nor、Nos表达量提高了85.0%、147%、16.5%、47.1%、95.9%。对比体系中“游离细菌”和“Fe3O4粘附细菌”,发现二者的反硝化功能基因以及反硝化相关酶没有显著差别;而Fe3O4粘附细菌电子传递相关蛋白表达量有所提高,说明了Fe3O4通过与细菌直接接触促进其生长代谢,导致体系中细菌总量的增加,从而提高反硝化速率。该结果可为反硝化强化技术的开发提供理论支撑。  相似文献   

13.
14.
本文采用共沉淀法制备了L-半胱氨酸(L-Cys)修饰的Fe3O4包裹TiO2(Fe3O4@TiO2/L-Cys)复合纳米粒子。通过透射电子显微镜(TEM),X射线衍射(XRD)和傅立叶变换红外光谱仪(FTIR)对复合纳米粒子进行了表征,并讨论了复合纳米粒子对HL60细胞体外光动力疗法(PDT)灭活的影响。并对其PDT灭活机制进行了初步探索。试验表明,Fe3O4@TiO2/L-Cys复合纳米粒子分散性高,生物相容性好,对细胞的暗毒性更低,并可以有效增强靶向性,提高PDT灭活效率,在410nm波长的光激发下,光照剂量为18J/cm^2的情况下,当TiO2与Fe3O4的比例为1∶3时,整体PDT效率最高。PDT灭活效率可达69.36%。  相似文献   

15.
16.
In the present work, Fe3O4–carbon nanotubes (CNTs) composite was explored as a sensing material candidate for ammonium sulfide. Intense chemiluminescence emission can be observed during the catalytic oxidation of ammonium sulfide on the surface of Fe3O4–CNTs composite. Based on this phenomenon, a selective and sensitive gas sensor for the determination of ammonium sulfide was demonstrated. Under the optimized conditions, the linear range of cataluminescence intensity vs concentration of ammonium sulfide gas was 1.4–115 µg mL?1 (R = 0.998) with a limit of detection (S/N = 3) of 0.05 µg mL?1. The relative standard deviation (n = 5) for 14.3 µg mL?1 ammonium sulfide was 1.9%. There was no response to common foreign substances, such as sulfur dioxide, toluene, aether, ethanol, acetone, hydrogen sulfide, carbon bisulfide, benzene and ammonia. The proposed sensor was successfully applied for the determination of ammonium sulfide in artificial air samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

18.
Magnetic nanoparticles (NPs) are used to a large extent in the targeted delivery of therapeutic agents. In this study, we aimed to investigate the possible toxicity of Fe2O 3 NPs on human cells, including blood lymphocytes. We isolated blood lymphocytes from healthy humans using Ficoll polysaccharide and subsequently by gradient centrifugation. Then, the toxicity parameters, including cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, cellular glutathione (GSH) level, mitochondrial and lysosomal damage, were measured in blood lymphocytes after exposure to Fe 2O 3 NPs. Our results indicated that Fe 2O 3 NPs significantly (dependent on concentration) reduced the cell viability, and the IC 50 was determined to be 1 mM. With increasing concentrations, we found that Fe 2O 3 NPs–induced cell toxicity was associated with a significant increase in intracellular ROS and loss of mitochondrial membrane potential and lysosomal membrane leakiness. Consequently, these NPs at different concentrations affect GSH level and cause oxidative stress in human lymphocytes.  相似文献   

19.
Integrins play a key role in the intermediation and coordination between cells and extracellular matrix components. In this study, we first determined the presence of the β integrin‐like protein and its presumptive ligand, fibronectin‐like protein, during development and in some adult tissues of the bivalve mollusc Mytilus trossulus. We found that β integrin‐like protein expression correlated with the development and differentiation of the digestive system in larvae. Besides the presence of β integrin‐like protein in the digestive epithelial larval cells, this protein was detected in the hemocytes and some adult tissues of M. trossulus. The fibronectin‐like protein was detected firstly at the blastula stage and later, the FN‐LP‐immunoreactive cells were scattered in the trochophore larvae. The fibronectin‐like protein was not expressed in the β integrin‐positive cells of either the veliger stage larvae or the adult mussel tissues and the primary hemocyte cell culture. Despite the β integrin‐ and fibronectin‐like proteins being expressed in different cell types of mussel larvae, we do not exclude the possibility of direct interaction between these two proteins during M. trossulus development or in adult tissues.  相似文献   

20.
To assess the biological safety of Fe3O4 nanoparticles (NPs), the oxidative-damage effect of these NPs was studied. Twenty-five Kunming mice were exposed to Fe3O4 NPs by intraperitoneai injection daily for 1 week at doses of 0, 10, 20, and 40 mg.kg1. Five Kunming mice were also injected with 40 mg.kg 1 ordinary Fe3O4 particles under the same physiological conditions. Biomarkers of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) in the hepatic and brain tissues were detected. Results showed that no significant difference in oxidative damage existed at concentrations lower than 10 mg.kg i for NPs compared with the control group. Fe3O4 NP concentration had obvious dose-effect relationships (P〈 0.05 or P 〈 0.01) with ROS level, GSH content, and MDA content in mouse hepatic and brain tissues at〉20 mg.kg 1 concentrations. To some extent, ordinary Fe3O4 particles with 40mg.kg -1 concentration also affected hepatic and brain tissues in mice. The biological effect was similar to Fe3O4 NPs at 10 mg. kg-1 concentration. Thus, Fe3O4 NPs had significant damage effects on the antioxidant defense system in the hepatic and brain tissues of mice, whereas ordinary Fe3O4 had less influence than Fe3O4 NPs at the same concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号