首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit–frugivore interactions are crucial for the dynamics and regeneration of most forested ecosystems. Still, we lack an understanding of the potential variation in the sign and strength of such interactions in relation to variations in the spatial and temporal ecological context. Here, we evaluated spatial (three sites) and temporal (two fruiting seasons) local variation in the sign (seed predation versus dispersal) and strength (frequency and quantity) of the interactions among six frugivorous mammals and a community of Mediterranean fleshy‐fruited shrubs. We examined mammal faecal samples and quantified frequency of seed occurrence, number of seeds per faecal sample, seed species diversity and quality of seed treatment (i.e. percentage of undamaged seeds). The frequency of seed occurrence and number of seeds per faecal sample strongly varied among dispersers, sites, seasons and fruit species. For instance, fox Vulpes vulpes faeces showed between 6 and 40 times more seeds than wild boar Sus scrofa faeces in seasons or sites in which Rubus and Juniperus seeds were dominant. However, in seasons or sites dominated by Corema seeds, wild boar faeces contained up to seven times more seeds than fox faeces. Mammalian carnivores (fox and badger, Meles meles) treated seeds gently, acting mostly as dispersers, whereas deer (Cervus elaphus and Dama dama) acted mainly as seed predators. Interestingly, rabbit Oryctolagus cuniculus acted as either mostly seed disperser or seed predator depending on the plant species. Our results indicated that the sign of fruit–frugivore interactions depended mainly on the identity of the partners. For a particular fruit–frugivore pair, however, our surrogate of interaction strength largely varied with the spatio‐temporal context (year and habitat), leading to a low specificity across the seed–frugivore network. The high spatio‐temporal variability of seed dispersal (in quantity, quality and seed diversity) by different frugivores would confer resilience against unpredictable environmental conditions, such as those typical of Mediterranean ecosystems.  相似文献   

2.
  • Context‐dependency in species interactions is widespread and can produce concomitant patterns of context‐dependent selection. Masting (synchronous production of large seed crops at irregular intervals by a plant population) has been shown to reduce seed predation through satiation (reduction in rates of seed predation with increasing seed cone output) and thus represents an important source of context‐dependency in plant‐animal interactions. However, the evolutionary consequences of such dynamics are not well understood.
  • Here we describe masting behaviour in a Mediterranean model pine species (Pinus pinaster) and present a test of the effects of masting on selection by seed predators on reproductive output. We predicted that masting, by enhancing seed predator satiation, could in turn strengthen positive selection by seed predators for larger cone output. For this we collected six‐year data (spanning one mast year and five non‐mast years) on seed cone production and seed cone predation rates in a forest genetic trial composed by 116 P. pinaster genotypes.
  • Following our prediction, we found stronger seed predator satiation during the masting year, which in turn led to stronger seed predator selection for increased cone production relative to non‐masting years.
  • These findings provide evidence that masting can alter the evolutionary outcome of plant‐seed predator interactions. More broadly, our findings highlight that changes in consumer responses to resource abundance represent a widespread mechanism for predicting and understanding context dependency in plant‐consumer evolutionary dynamics.
  相似文献   

3.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   

4.
The predator satiation hypothesis poses that synchronous and variable seed production during masting events increases seed escape through seed predator satiation. The success of this strategy depends upon the type of consumer functional response, in this case defined as the change in seed consumption rate by a predator as a function of change in seed density. Type II (where the proportion of seed consumed is highest at low levels of seed availability) and type III (where the proportion of seed consumed is highest at some intermediate level of seed availability and then declines towards zero) functional responses describe negative density‐dependence and indicate predator satiation. The type of function response should be contingent upon herbivore traits: type II responses are predicted for dietary specialist predators with low mobility, and type III responses are predicted for highly mobile, dietary generalist predators. Surprisingly, most studies have not evaluated whether functional responses vary among seed predator guilds. Here we describe the functional responses at population and individual tree level of highly mobile generalist (birds and rodents) and less mobile specialist (insects) pre‐dispersal seed predators attacking acorns of two sympatric oaks (Quercus suber and Q. canariensis) over a 10‐year period. Our results showed that in most cases specialist seed predators exhibited the predicted type II functional response at both the individual tree and population level for both oak species. However, generalist seed predators did not exhibit the predicted type III response; instead, they also exhibited a type II response at the individual tree and population level for both oak species. By independently assessing the effects of multiple seed predators associated with the same host tree species, our work highlights the influence of herbivore traits on the outcome of plant–seed predator interactions in masting species, and thus furthers our understanding of the ecological and evolutionary mechanisms underlying masting behaviour.  相似文献   

5.
Janzen–Connell effects are negative effects on the survival of a plant's progeny at high conspecific densities or close to its conspecifics. Although the role of Janzen–Connell effects on the maintenance of plant diversity was frequently studied, only few studies targeted Janzen–Connell effects via postdispersal seed predation in temperate grassland systems. We examined effects of conspecific density (abundance of conspecific adult plants) on postdispersal seed predation by invertebrates of three grassland species (Centaurea jacea, Geranium pratense, and Knautia arvensis) in experimental plant communities. Additionally, we examined the impact of plant species richness and different seed predator communities on total and relative seed predation (= seed predation of one plant species relative to others). We offered seeds in an exclusion experiment, where treatments allowed access for (1) arthropods and slugs, (2) arthropods only, (3) small arthropods only, and (4) slugs only. Treatments were placed in plots covering a gradient of abundance of conspecific adults at different levels of plant species richness (1, 2, 3, 4, 8 species). Two of the plant species (C. jacea and K. arvensis) experienced higher rates of seed predation and relative predation with increasing abundance of conspecific adults. For C. jacea, this effect was mitigated with increasing plant species richness. Differences in seed predator communities shifted seed predation between the plant species and changed the magnitude of seed predation of one plant species relative to the others. We exemplify density‐dependent increase in seed predation via invertebrates in grassland communities shaping both the total magnitude of species‐specific seed predation and seed predation of one species relative to others. Further differences in seed predator groups shift the magnitude of seed predation between different plant species. This highlights the importance of invertebrate seed predation to structure grasslands via density‐dependent effects and differing preferences of consumer groups.  相似文献   

6.
Interactions between species pairs are almost always mediated by interactions with other species. The outcomes of these multispecies interactions are often difficult to predict and are rarely studied. In addition to their theoretical importance, multispecies interactions are also important for management situations. Where multiple agents are used to control invasive species, interactions between agents may either enhance or reduce the impacts on the target species, or may simply have additive effects. In this study, conducted in a Mediterranean‐type woodland in Australia, we examined how the interaction between an invasive legume, Cytisus scoparius (Leguminosae), its pollinator, Apis mellifera and a seed predator, Bruchidius villosus (Bruchidae), are modified by a native hemiparasitic vine, Cassytha pubescens (Loranthaceae). The parasite had a direct negative effect on C. scoparius, reducing flowering by 50% and consequently fruit and seed production. Despite having fewer flowers, infected plants had the same proportion of ‘tripped’ flowers, an indirect measure of pollinator visitation, as uninfected plants; although fruit formed on infected plants it was more likely to abort prematurely. Seed predation by B. villosus was lower on parasite‐infected C. scoparius plants than in uninfected plants. Although Ca. pubescens had an antagonistic effect on B. villosus, in consort, the two agents reduced overall seed production by an average of 62%. The acquired parasite Ca. pubescens was more effective in reducing reproductive output than the introduced seed predator, B. villosus, and shows potential as a biocontrol agent for C. scoparius. We documented a subadditive effect of two biological enemies on the invasive species, where the acquired parasite had a stronger effect than the introduced seed predator.  相似文献   

7.

Question

Anthropogenic edges caused by transport infrastructure such as dirt roads and trails (also known as Soft Linear Developments; SLD) are pervasive in almost every terrestrial ecosystem. Revegetating these edges may reduce some of their negative effects, such as their permeability to biological invasions and detrimental effects on wildlife, potentially becoming suitable habitat for a broad range of species. Selecting species with low post‐dispersal seed predation rates may improve the effectiveness of revegetation programmes.

Location

Mediterranean scrublands in SW Spain.

Methods

We made offerings of a total of 16,000 seeds of eight species of fleshy‐fruit shrubs both along SLD edges and scrubland interiors in two independent blocks in each of three distant locations. Using four types of selective enclosure, we assessed the relative contribution of three seed predator guilds (ants, rodents and birds) to seed predation rates both along SLD edges and scrubland interiors.

Results

The effects of anthropogenic edges on seed predation rates were species‐specific. The large and hard‐seeded species Chamaerops humilis was not predated at all. Juniperus phoenicea and Corema album seeds had higher predation rates in scrubland interiors than in edges. The small‐seeded Rubus ulmifolius experienced relatively low seed predation rates compared to the other species. Predation rates for this species were higher along SLD edges than in scrubland interiors. Ants were the main seed predators in the area, and showed marked preferences for J. macrocarpa and C. album seeds at both SLD edges and scrubland interiors.

Conclusions

Our results show the strong context‐dependency of seed predation rates in both SLD edges and scrubland interiors, and thus the importance of well spatially and temporally replicated studies. Species with large and hard seeds may be good candidates for roadside revegetation programmes. However, the relative suitability of plant species would depend on the seed predator community. Our findings confirm that studies on seed predation may help planning cost‐effective species selection for edge revegetation efforts worldwide.  相似文献   

8.
We investigated pre‐dispersal seed predation by insects in a bayberry Myrica rubra Sieb. et Zucc. (Myricaceae) on Yakushima Island, Japan. To clarify the patterns of seed fate and predation, all fruit that fell into seed traps were collected to allow any insect larvae within the fruit to emerge, and the fruit were finally dissected to determine whether or not they had been attacked by insect predators. Two lepidopteran species, Thiotricha pancratiastis (Meyrick) (Gelechiidae) and Neoblastobasis spiniharpella Kuznetzov & Sinev (Blastobasidae), emerged from the fruits. Thiotricha pancratiastis is the major seed predator of M. rubra, attacking the fruits intensively during the primary stage of fruit development. Thiotricha pancratiastis had been known as a foliage feeder (leaf miner) of M. rubra, but we revealed that the insect is also an important seed predator of the bayberry.  相似文献   

9.
Biotic resistance has been invoked as a major barrier to woody species invasion, although the role of resident generalist consumers and their interaction with seed availability in a local community has received little attention. We assessed tree seed consumption by rodents under two different scenarios: (i) We documented in field spatio‐temporal patterns of seed predation by native rodents on two exotic tree species, Gleditsia triacanthos or ‘honey locust’ and Robinia pseudoacacia or ‘white locust’ (family Leguminosae), in five grassland habitats of the Inland Pampa, Argentina. (ii) We conducted laboratory feeding trials to evaluate tree seed consumption in the presence (cafeteria‐style feeding trials) and in the absence (non‐choice feeding trials) of alternative food supplies. Seed predation was generally higher for Robinia than for Gleditsia seeds, both in field and laboratory conditions. For both tree species, seed predation varied between habitats and seasons and was higher in the native tussock grassland than in the remaining studied communities, whereas the crop field showed the lowest levels of consumption along with the absence of captured rodents. Seed consumption of Gleditsia and Robinia among the four grassland communities (which did not differ in rodent abundance) was negatively associated with the availability of alternative food. Laboratory feeding trials showed a higher consumption of Gleditsia seeds in the non‐choice than in the cafeteria‐style feeding trials, while the consumption of Robinia seeds did not differ in the absence or presence of alternative seeds. These patterns indicate that the contribution of resident granivores to invasion resistance might depend on colonizer species identity, recipient community type and season of the year. We suggest that rodent preferences for different invader seeds will interact with the availability of alternative food in the local habitat in influencing the amount of predator‐mediated biotic resistance to invasion.  相似文献   

10.
Variation in annual flowering effort is described for 16 long datasets from 11 species of Chionochloa (Poaceae) in New Zealand. All populations exhibited extreme mast seeding. The most variable species was C. crassiuscula (coefficient of variation, CV=3.02) over 26 years at Takahe Valley, Fiordland, which is the highest published CV we know of worldwide. The other populations also had high CVs (lowest CV=1.42, mean CV=1.84) which were higher than for other well‐studied genera such as Picea, Pinus and Quercus. There were also frequent years of zero flowering (mean across all populations was 37.2% zero years; maximum 53% for C. rubra and C. crassiuscula over 19 years) whereas zero years are rare in other published masting datasets.Flowering was highly synchronous among species within a site (mean r=0.886), and also (though significantly less so) among sites. Among sites, synchrony was not significantly higher within‐species (mean r=0.711) than between‐species (r=0.690). Warm summer temperatures led to heavy flowering the following summer. Flowering synchrony increased with increasing synchrony in local deseasonalised summer temperatures, and decreased with increasing distance between sites.Mast seeding has been shown in Chionochloa to reduce losses to specialist flower or seed predators. Among‐species synchrony may be adaptive if species share a common seed predator. Developing seeds of at least 10 Chionochloa species are attacked by larvae of an undescribed cecidomyiid. In Takahe Valley, where masting is most pronounced, cecidomyiids attacked all six Chionochloa species in all four years studied. Mean annual losses were almost constant (10.0 to 13.4%) while flowering effort varied 100‐fold. The invariant losses are consistent with other evidence that the cecidomyiid may have extended diapause, which would make it harder to satiate by mast seeding. We hypothesise that one possible factor favouring such extremely high levels of mast seeding in Chionochloa is that its seed predator is very hard to satiate.  相似文献   

11.
The effects of plant genotype and environmental factors on tri‐trophic interactions have usually been investigated separately, limiting our ability to compare the relative strength of these effects as well as their potential to interactively shape arthropod communities. We studied the interactions among the herb Ruellia nudiflora, a seed predator, and its parasitoids using 14 maternal plant families grown in a common garden. By fertilizing half of the plants of each family and subsequently recording fruit number, seed predator number, and parasitoid number per plant, we sought to compare the strength of plant genetic effects with those of soil fertility, and determine if these factors interactively shape tri‐trophic interactions. Furthermore, we evaluated if these bottom–up factors influenced higher trophic levels through changes in abundance across trophic levels (density‐mediated) or changes in the function of species interactions (trait‐mediated). Plant genetic effects on seed predators and parasitoids were stronger than fertilization effects. Moreover, we did not find plant genetic variation for fertilization effects on fruit, seed predator, or parasitoid abundance, showing that each factor acted independently on plant resources and higher trophic levels. Both bottom–up forces were transmitted via density‐mediated effects where increased fruit number from fertilization and plant genetic effects increased seed predator and parasitoid abundance; however, seed predator attack was density‐dependent, while parasitoid attack was density‐independent. Importantly, there was evidence (marginally significant in one case) that fertilization modified the function of plant‐seed predator and seed predator–parasitoid interactions by increasing the number of seed predators per fruit and decreasing the number of parasitoids per seed predator, respectively. These findings show that plant genetic and soil fertility effects cascaded up this simple food chain, that plant genetic effects were stronger across all trophic levels, and that these effects were transmitted independently and through contrasting mechanisms.  相似文献   

12.
13.
Post‐dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient‐rich over nutrient‐poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants.  相似文献   

14.
Comparative analyses of spatial genetic structure of populations of plants and the insects they interact with provide an indication of how gene flow, natural selection and genetic drift may jointly influence the distribution of genetic variation and potential for local co‐adaptation for interacting species. Here, we analysed the spatial scale of genetic structure within and among nine populations of an interacting species pair, the white campion Silene latifolia and the moth Hadena bicruris, along a latitudinal gradient across Northern/Central Europe. This dioecious, short‐lived perennial plant inhabits patchy, often disturbed environments. The moth H. bicruris acts both as its pollinator and specialist seed predator that reproduces by laying eggs in S. latifolia flowers. We used nine microsatellite markers for S. latifolia and eight newly developed markers for H. bicruris. We found high levels of inbreeding in most populations of both plant and pollinator/seed predator. Among populations, significant genetic structure was observed for S. latifolia but not for its pollinator/seed predator, suggesting that despite migration among populations of H. bicruris, pollen is not, or only rarely, carried over between populations, thus maintaining genetic structure among plant populations. There was a weak positive correlation between genetic distances of S. latifolia and H. bicruris. These results indicate that while significant structure of S. latifolia populations creates the potential for differentiation at traits relevant for the interaction with the pollinator/seed predator, substantial gene flow in H. bicruris may counteract this process in at least some populations.  相似文献   

15.
We investigated whether aphid presence and abundance influence the survival of an endophagous pre-dispersal seed predator of the same host plant. We studied a terrestrial community module consisting of one plant (Laburnum anagyroides) and four insect species/groups (an aphid, Aphis cytisorum, a pre-dispersal seed predator bruchid, Bruchidius villosus, aphid-attending ant species, and parasitoids of the bruchid). Two complementary investigations were carried out in parallel: (a) a plant-aphid-ant complex was experimentally manipulated by excluding aphids, ants, or both for 5 years to assess their impacts on the seed predator’s survival and parasitism rate; and (b) different aphid infestation levels on randomly selected infructescences were correlated with plant traits, nutrient allocation pattern, and variables of seed predator’s survival, such as the number of eggs laid and adults emerged influenced by parasitoid activity, for 7 years. We found that ants did not affect bruchid oviposition negatively, but egg-parasitism was significantly decreased by their presence. Plant traits, such as the number of seeds and seed mass, as well as seed predator performance were negatively affected by heavy aphid infestation. Seed predator -infested seeds had no effect on the mass of remaining seeds in the pods. This study suggests that aphids were nevertheless promoting bruchid abundance and survival, depending on their infestation rate.  相似文献   

16.
The predator‐avoidance hypothesis states that once released from the parent plant, myrmecochorous seeds are rapidly taken by ants to their nests, where they are protected from predators. Previous studies conducted to test this hypothesis have frequently neglected two major aspects necessary for its verification: 1) the influence of processes acting after the seed release and 2) the spatial evenness of such processes. Thus, large‐scale variations in the mechanisms acting beyond seed release, and possibly influencing seed escape from predators, remain poorly documented. Here, we present the results of a post‐dispersal seed‐removal experiment on the myrmecochorous herb Helleborus foetidus, aimed at verifing the predator‐avoidance hypothesis by considering two key post‐release aspects of seed fate: seed destination (dispersed or nondispersed) and seed burial (buried or not buried). Experiments were performed in four different regions in the Iberian Peninsula. After three days of exposure of seeds to the main predator (fieldmice Apodemus sylvaticus), ca 30% of the seeds were removed. Seed destination affected the proportion of seeds escaping predation, but the sign, magnitude and statistical significance of the effect varied among the geographical regions. In the southern region (Cazorla), seeds dispersed in ant nests or intermediate destinations suffered scarcely any predation, but seeds under reproductive‐age plants experienced losses ca 50%. Conversely, in the northern region (Caurel), seeds in nests suffered significantly greater losses than seeds under plants or intermediate destinations, suggesting that nests were especially unsafe destinations. Seed burial had a strong impact on seed escape from predators, and its effect was highly consistent among geographical regions. In view of the consistency of its effect at different spatial scales, seed burial was a more general mechanism for predation avoidance than seed relocation to ant nests, which was habitat‐ and/or ant‐species‐dependent. Our results thus only partially support the predator‐avoidance hypothesis for the evolution of myrmecochory.  相似文献   

17.
Seed predation is an important ecological and evolutionary force that directly affects the distribution of plant species. Copaifera langsdorffii is a tropical tree species with supra‐annual fruiting, which has its seeds predated by a specialist endogenous insect (Rynochenus brevicollis: Curculionidae) in the Brazilian savanna. Three hypotheses were addressed: (i) the predator satiation hypothesis, (ii) the resource concentration hypothesis and (iii) the larger seed predation hypothesis. A total of 112 individual C. langsdorffii were monitored monthly from January to August during four consecutive years (from 2008 to 2011) to determine the presence of fruits on each plant. All trees produced fruits in the year 2008, whereas none of them produced flowers or fruits in 2009 or 2010. Moreover, only 65 individuals (58%) marked in 2008 produced fruits in 2011. The number of fruits per plant was approximately 21% greater in 2008 than in 2011, while the percentage of seed predation was 76% greater in 2011, thereby supporting the predator satiation hypothesis. The percentage of seeds predated was not affected by the number of fruits per plant. Therefore, our data did not support the resource concentration hypothesis. Plants producing large seeds experienced more seed predation by R. brevicollis, supporting the larger seed predation hypothesis. In addition, we also observed a positive relationship between seed volume and adult R. brevicollis weight. This study demonstrates the importance of supra‐annual fruiting for increasing survivorship of C. langsdorffii seeds both at the individual and the population level, and suggests that seed predators select plants producing large seeds as a way of increasing the number of offspring.  相似文献   

18.
Post‐dispersal predation can be a major source of seed loss in temperate forests. Little is known, however, about how predator‐mediated indirect interactions such as apparent competition alter survival patterns of canopy tree seeds. Understorey plants may enhance tree seed predation by providing sheltered habitat to granivores (non‐trophic pathway). In addition, occurrence of different tree seeds in mixed patches may lead to short‐term apparent competition between seed types, because of the granivores’ foraging response to changes in food patch quality (trophic pathway). We hypothesised that understorey bamboo cover and mixing of seed species in food patches would both increase tree seed predation in a Nothofagus dombeyi?Austrocedrus chilensis forest in northern Patagonia, Argentina. Seed removal experiments were conducted for three consecutive years (2000–2002) differing in overall granivory rates. Seed patch encounter and seed removal rates were consistently higher for the larger and more nutritious Austrocedrus seeds than for the smaller Nothofagus seeds. Seed removal was greater beneath bamboo than in open areas. This apparent competition pathway was stronger in a low‐predation year (2000) than in high‐predation years (2001–2002), suggesting a shift in microhabitat use by rodents. Patch composition had a significant, though weaker, impact on seed survival across study years, whereas seed density per patch enhanced encounter rates but did not influence seed removal. Removal of the less‐preferred Nothofagus seeds increased in the presence of Austrocedrus seeds, but the reciprocal indirect effect was not observed. However, this non‐reciprocal apparent competition between seed species was only significant in the high‐predation years. Our study shows that granivore‐mediated indirect effects can arise through different interaction pathways, affecting seed survival patterns according to the predator's preference for alternative seed types. Moreover, results indicate that the occurrence and relative strength of trophic vs non‐trophic pathways of apparent competition may change under contrasting predation scenarios.  相似文献   

19.
The trophic level (TL) mean and variance, and the degree of omnivory for five Celtic Sea fish predators were estimated using a database of stomach content records characterized by a high level of taxonomic resolution. The predators occupied a high position in the food web, i.e. 4·75 for Atlantic cod Gadus morhua, 4·44 for haddock Melanogrammus aeglefinus, 4·88 for European hake Merluccius merluccius, 5·00 for megrim Lepidorhombus whiffiagonis and 5·27 for whiting Merlangius merlangus. The level of taxonomic resolution of the prey did not greatly affect mean TL predator values; an effect on variance was evident, low resolution masking intra‐population variability in TL. Generalized additive models (GAM) were used to explain the variability of predator TL caused by environmental variables (International Council for the Exploration of the Sea, ICES, division and season) and predator characteristics (total length, LT). Significant year, location season and interaction effects were found for some species and with LT at the scale of ICES subdivision. The species‐specific variability of TL could be due to spatio‐temporal variations in prey availability and in predator selectivity following ontogenetic changes. Omnivorous fish TL was less affected by spatio‐temporal variations. In addition, results showed that the omnivory index and TL variability provide dissimilar information on predator feeding strategy. Combining information on TL variability and omnivory allowed between within‐individual and between‐individual components contributing to trophic niche width to be separated and the type of generalization of fish predators to be identified.  相似文献   

20.
Predation of tree seeds can be a major factor structuring plant communities. We present a three year study on tree seed survival on experimental dishes in an old‐growth forest in central Europe in Austria. We addressed species specific, spatial and temporal aspects of post‐dispersal seed predation. Seeds of Norway spruce Picea abies, European beech Fagus sylvatica, and silver fir Abies alba were exposed on dishes in different types of exclosures which allowed access only to specific guilds of seed predators. Removal experiments were carried out in two old‐growth forests and a managed forest (macro‐sites), including micro‐sites with and without cover of ground vegetation. We conducted the experiment in three consecutive years with a mast year of beech and spruce before the first year of the study. The seed removal experiments were combined with live trapping of small mammals being potential seed predators. Our experiments showed a distinctly different impact of different predator guilds on seed survival on the dishes with highest removal rates of seeds from dishes accessible for small mammals. We observed differing preferences of small mammals for the different tree species. Seed survival in different macro‐ and micro‐habitats were highly variable with lower seed survival in old growth forests. In contrast to our assumption, and in contrast to the satiation hypothesis which assumes higher seed survival in and directly after mast years, seed survival was lower in the year following the mast year of beech when a population peak of small mammals occurred and higher in intermast periods when subsequently small mammal population crashed. This suggests a higher importance of sporadic masting shortly after mast years in intermast periods for establishment of forest trees provided that pollination efficiency is high enough in such years. Combined with the high seed mortality observed after the mast year, this corroborates the important role of seed predation for forest dynamics. An altered synchrony or asynchrony of masting of different tree species and changed masting frequencies through climate change may thus lead to strong and non‐linear effects on forest dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号