首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CaF2:Eu2+ is a well known phosphor having efficient excitation in the near ultraviolet (NUV) range. Phosphors with NUV excitation are required in newly emerging applications such as photoluminescence liquid crystal displays (PLLCD), solid‐state lighting (SSL), and down‐conversion for solar cells. However, emission of CaF2:Eu2+ is around 424 nm. Eye sensitivity drops considerably at these wavelengths. It is thus not useful for display applications for which emission in one of the primary colours (blue – 450 nm, green – 540 nm or red – 610 nm) is required. Efforts were made to modify the Photoluminescence (PL) spectra of CaF2:Eu2+ to meet these requirements using co‐dopants. A Ca0.49Sr0.50Eu0.01F2 phosphor showing better colour coordinates and having an emission maximum around 440 nm was discovered during these studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
《Luminescence》2017,32(3):334-340
A series of Eu2+‐activated barium orthosilicates (BaZnSiO4) were synthesized using a high‐temperature solid‐state reaction. A photoluminescence excitation study of Eu2+ shows a broad absorption band in the range of 270–450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f–5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450–550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu2+ in two different Ba sites in the BaZnSiO4 host lattice. The energy transfers between the Eu2+ ions in BaZnSiO4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu2+‐activated BaZnSiO4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV‐region (270–420 nm), making them attractive candidate as a green phosphor for solid state lighting–white light‐emitting diodes.  相似文献   

3.
Ba3Al2O5Cl2:Eu2+ phosphor was prepared by combustion synthesis (CS). The prepared phosphor was excited at 329 nm; the phosphors shows an efficient bluish‐green wide‐band emission centred at 490 nm, which originates from the 4f6d1 → 4f7 transition of Eu2+ ions. The excitation spectra of the phosphors have a band centred at 329 nm. It was also characterized by XRD, FT–IR for confirmation of phase purity, and FT–IR analysis indicated the vibrations of metal–oxygen (M–O) groups. SEM shows the morphology of the phosphor at the submicron scale. The results indicate that Ba3Al2O5Cl2:Eu2+ phosphor may be applicable for solid‐state lighting purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Eu2+‐activated SrMg2Al16O27 novel phosphor was synthesized by a combustion method (550°C furnace). The prepared phosphor was first characterized by X‐ray diffraction (XRD) for confirmation of phase purity. SEM analysis showed the morphology of the phosphor. The photoluminescence characteristics showed broad‐band excitation at 324 nm, which was monitored at 465 nm emission wavelength. The SrMg2Al16O27:Eu2+ phosphor shows broad blue emission centred at 465 nm, emitting a blue light corresponding to 4f65d1 → 4f7 transition. Here we report the photoluminescence characteristics of the prepared phosphor and compare it with commercial BAM:Eu2+ phosphor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Europium ion (Eu2+) doped Sr2SiO4 phosphors with greenish‐yellow emission were synthesized using microwave‐assisted sintering. The phase structure and photoluminescence (PL) properties of the obtained phosphor samples were investigated. The PL excitation spectra of the Sr2SiO4:Eu2+ phosphors exhibited a broad band in the range of 260 nm to 485 nm with a maximum at 361 nm attributed to the 5f‐4d allowed transition of the Eu2+ ions. Under an excitation at 361 nm, the Sr2SiO4:Eu2+ phosphor exhibited a greenish‐yellow emission peak at 541 nm with an International‐Commission‐on‐Illumination (CIE) chromaticity of (0.3064, 0.4772). The results suggest that the microwave‐assisted sintering method is promising for the synthesis of phosphors owing to the decreased sintering time without the use of additional reductive agents.  相似文献   

6.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The new borate phosphor CaB2O4:Eu3+ was synthesized by solid‐state method and their photoluminescence properties were investigated. The results show that the pure phase of CaB2O4 could be available at 900°C, CaB2O4:Eu3+ phosphor could be effectively excited by the near ultraviolet light (NUV) (392 nm), and the luminescent intensity of CaB2O4:Eu3+ phosphor reached to the highest when the doped‐Eu3+ content was 4 mol%. The emission spectra of CaB2O4:Eu3+ phosphor could exhibit red emission at 612 nm and orange emission at 588 nm, which are ascribed to the 5D07F2 and 5D07F1 transitions of Eu3+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Eu‐doped aluminum nitride phosphors were successfully prepared using simple direct nitridation of a metallic aluminum and Eu2O3 powder mixture in flowing ammonia. AlN formed at reaction temperatures >900°C, and Eu3+ transformed into the secondary oxide phase EuAl2O4 in the nitridation condition. Phase pure AlN was obtained by post‐heat treatment of the nitridated product at 1600°C for 3 h in a nitrogen atmosphere, with an Eu2+ doping concentration < 0.5%. The phosphors exhibited broad green emission centered at 521 nm under 363 nm excitation. The luminescence of the phosphor was significantly influenced by the post‐heat treatment temperature, which affected the dissolution of Eu2+, phase purity, crystallinity, and particle size of the AlN host.  相似文献   

9.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

10.
A high intensity 464 nm excitable ZnWO4:Eu3+ red‐emitting phosphor for warm white lighting applications was prepared using a solid‐state reaction method by varying the dopant Eu3+ concentration. Crystalline purity and phase identification was confirmed and revealed using powder X‐ray diffraction and Rietveld refinement analysis. The surface morphology of Zn1‐xEuxWO4 (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) was examined using scanning electron microscopy (SEM) techniques. From SEM analysis, the ZnWO4:Eu3+ phosphor prepared at 1–3% molar Eu3+ concentrations exhibited a small pebble‐like morphology with a smooth surface. On increasing the molar concentration of Eu3+ to >3%, the pebble stone morphology disappeared and a large, smooth irregular polygon‐shaped granular‐like morphology was obtained. Of the higher mol% Eu3+, the 4% Eu3+‐doped ZnWO4 showed the best photoluminescence properties with high intensity and sharp excitation at 395 and 464 nm, followed by red emission centred at 615 nm with excellent CIE coordinates (x = 0.58 and y = 0.41) in the core red region. Elemental composition and chemical state analysis were carried out for the 4% Eu3+‐doped ZnWO4 phosphor using X‐ray photoelectron spectroscopy and energy dispersive X‐ray spectroscopy studies. Based on all the above analyses, the Eu3+‐doped ZnWO4 phosphor was found to be a very efficient red‐emitting phosphor under near‐UV light as well as under visible light excitation and could be used for white LED and field emissive displays applications.  相似文献   

11.
The Eu2+/Eu3+ mixed valence phosphor Ca2SiO2F2:Eu2+/Eu3+ was prepared using a solid‐state reaction synthesis method in a CO atmosphere, and the optical properties were investigated. The spectroscopic properties revealed that Ca2+ ions were occupied by both Eu2+ and Eu3+ ions in Ca2SiO2F2, and both ions were able to generate their characteristic emissions. A broad 5d → 4f Eu2+ band at ~470 nm and narrow 4f → 4f Eu3+ peaks upon excitation with n‐UV light were observed. The ratio between Eu2+ and Eu3+ emissions changed regularly, and the relative intensity of the red component from Eu3+ became systematically stronger with increasing overall Eu content. As a result, the emission color of these phosphors can be tunable from blue to pink under n‐UV light excitation.  相似文献   

12.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

13.
Long persistence phosphor CaAl4O7: Eu2+, Dy3+ were prepared by a combustion method. The phosphors were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), decay time measurement techniques and photoluminescence spectra (PL). The CaAl4O7: Eu2+, Dy3+ phosphor showed a broad blue emission, peaking at 445 nm when excited at 341 nm. Such a blue emission can be attributed to the intrinsic 4f → 5d transitions of Eu2+ in the host lattices. The lifetime decay curve of the Dy3+ co‐doped CaAl4O7: Eu2+ phosphor contains a fast decay component and another slow decay one. Surface morphology also has been studied by SEM. The calculated CIE colour chromaticity coordinates was (0.227, 043). We have also discussed a possible long‐persistent mechanism of CaAl4O7:Eu2+, Dy3+ phosphor. All the results indicate that this phosphor has promising potential for practical applications in the field of long‐lasting phosphors for the purposes of sign boards and defence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

15.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Two synthesis routes, solid‐state reaction and precipitation reaction, were employed to prepare BaSiO3:Eu2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid‐state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO3:Eu2+ phosphors was performed by evaluation of X‐ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO3:Eu2+ phosphor, while the green emission was ascribed to a small amount of Ba2SiO4:Eu2+ compound that was present in the solid‐state reaction sample. This work clarifies the luminescence properties of Eu2+ ions in BaSiO3 and Ba2SiO4 hosts.  相似文献   

17.
Red‐emitting Mg4Nb2O9:Eu3+ phosphor is synthesized via a solid‐state reaction method in air, and its crystal structure and luminescence are investigated. The phosphor can be excited efficiently by ~ 395 nm light, coupled well with a ~ 395 nm near‐ultraviolet chip and emits red light at ~ 613 nm with sharp spectra due to 5D07 F2 transition of the Eu3+ ion. Mg4Nb2O9:Eu3+ phosphor sintered at 1350 ºC shows Commission international de I'Eclairage (CIE) chromaticity coordinates of x = 0.6354, y = 0.3592, and is a potential red‐emitting phosphor candidate for white light‐emitting diodes (W‐LEDs) under ~ 395 nm near‐ultraviolet LED chip excitation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A series of Eu3+‐, Ce3+‐, Dy3+‐ and Tb3+‐doped (Y,Gd)BO3 phosphors was synthesized by a solid‐state diffusion method. X‐Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu3+, Ce3+ , Dy3+ and Tb3+ are effectively excited with near UV‐light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu3+‐, Ce3+‐ and Tb3+/Dy3+‐doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu2+ phosphor. The phosphor (Y,Gd)BO3 doped with Eu3+, Dy3+ and Tb3+ showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near‐UV white light‐emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Europium (Eu3+) and bismuth (Bi3+) co‐activated LiBaBO3 powder phosphors were synthesized by a solid‐state reaction and the structure, particle morphology, optical and photoluminescent properties were investigated. X‐Ray diffraction patterns of the LiBaBO3 phosphors crystallized in a pure monoclinic phase, i.e. there were no secondary phases due to either incidental impurities or undecomposed starting materials. Scanning electron microscopy images showed that the powders were made up of fluffy needle‐like particles that were randomly aligned. The band‐gap of the LiBaBO3 host was estimated to be 3.33 eV from the UV/vis absorption data. Blue emission was observed from the LiBaBO3 host, which is ascribed to self‐activation of the host matrix. In addition, greenish‐blue (493 nm) and red (613 nm) emissions were observed from europium‐doped samples and were attributed to the emissions of Eu2+ and Eu3+, respectively. Furthermore, after codoping with Bi3+, the emission intensity of Eu3+ located at 613 nm was significantly enhanced. From the Commission Internationale de I′Eclairage (CIE) color coordinates, white emission was observed from LiBa1–xBO3:xEu3+ (x = 0.020 and 0.025) phosphor powders with color coordinates of x = 0.368, y = 0.378 and x = 0.376, y = 0.366, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号