首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu CL  Xie LX  Li M  Durairajan SS  Goto S  Huang JD 《PloS one》2007,2(12):e1321

Background

Salvianolic acid B (Sal B) is one of the most bioactive components of Salvia miltiorrhiza, a traditional Chinese herbal medicine that has been commonly used for prevention and treatment of cerebrovascular disorders. However, the mechanism responsible for such protective effects remains largely unknown. It has been considered that cerebral endothelium apoptosis caused by reactive oxygen species including hydrogen peroxide (H2O2) is implicated in the pathogenesis of cerebrovascular disorders.

Methodology and Principal Findings

By examining the effect of Sal B on H2O2-induced apoptosis in rat cerebral microvascular endothelial cells (rCMECs), we found that Sal B pretreatment significantly attenuated H2O2-induced apoptosis in rCMECs. We next examined the signaling cascade(s) involved in Sal B-mediated anti-apoptotic effects. We showed that H2O2 induces rCMECs apoptosis mainly through the PI3K/ERK pathway, since a PI3K inhibitor (LY294002) blocked ERK activation caused by H2O2 and a specific inhibitor of MEK (U0126) protected cells from apoptosis. On the other hand, blockage of the PI3K/Akt pathway abrogated the protective effect conferred by Sal B and potentated H2O2-induced apoptosis, suggesting that Sal B prevents H2O2-induced apoptosis predominantly through the PI3K/Akt (upstream of ERK) pathway.

Significance

Our findings provide the first evidence that H2O2 induces rCMECs apoptosis via the PI3K/MEK/ERK pathway and that Sal B protects rCMECs against H2O2-induced apoptosis through the PI3K/Akt/Raf/MEK/ERK pathway.  相似文献   

2.
《Free radical research》2013,47(9):1147-1155
Abstract

Background. Insulin protects cardiomyocytes from reactive oxygen species (ROS)-induced apoptosis after ischemic/reperfusion injury, but the mechanism is not clear. This study investigated the protective mechanism of insulin in preventing cardiomyocyte apoptosis from ROS injury. Methods. Rat cardiomyoblast H9c2 cells were treated with hydrogen peroxide (H2O2) or insulin at various concentrations for various periods of time, or with insulin and H2O2 for various periods of time. Cell viability was measured by the methylthiazolydiphenyl-tetrazolium bromide method. Cellular miR-210 levels were quantified using real-time RT-PCR. MiR-210 expression was also manipulated through lentivirus-mediated transfection. LY294002 was used to investigate involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Results. The percentage of viable cells was significantly and inversely associated with H2O2 concentration, an effect that was seemingly attenuated by insulin pretreatment. Treatments with H2O2 or insulin were associated with a significant increase in miR-210 levels. Manipulation of miR-210 expression by gene transfection showed that miR-210 could attenuate H2O2-induced cellular injury. Inhibition of the PI3K/Akt pathway by the Akt inhibitor LY294002 was associated with a decrease in miR-210 expression. Conclusion. Insulin stimulated the expression of miR-210 through the PI3K/Akt pathway, resulting in a protective effect against cardiomyocyte injury that had been induced by H2O2/oxygen species. Our results provide novel evidence regarding the mechanism underlying the protective effect of insulin.  相似文献   

3.
Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.  相似文献   

4.
Apoptosis of implanted mesenchymal stem cells (MSCs) limits the efficiency of MSC therapy. Recent studies showed the ligands of Toll-like receptors (TLRs) could control the function of these cells. We have investigated the effect of lipopolysaccharides (LPS), a ligand of TLR4, on the survival of MSCs and explored the roles of TLR4 and PI3K/Akt. H2O2/serum deprivation(H2O2/SD) induced apoptosis of MSCs but LPS-preconditioning (1.0 μg/ml) protected MSCs from H2O2/SD-induced apoptosis and promoted their proliferation. Western blotting showed that 1.0 μg/ml LPS enhanced phosphorylation of both Akt at Ser 473 and nuclear factor-kappa B (NF-κB) p65 at Ser 536. However, the protective effects of LPS on survival were not observed in TLR4lps-del MSCs. The results suggest appropriate treatments with LPS can protect MSCs from oxidative stress-induced apoptosis and improve the survival of MSCs via the TLR4 and PI3K/Akt pathway.  相似文献   

5.
Adipose-derived mesenchymal stem cells (ADMSCs)-based therapy is a promising modality for the treatment of myocardial infarction in the future. However, the majority of transplanted cells are readily lost after transplantation because of hypoxia and oxidative stress. An efficient means to enhance the ability of ADMSCs to survive under pathologic conditions is required. In our study, we explored the effects of exendin-4 (Ex-4) on ADMSCs apoptosis in vitro induced by hydrogen peroxide, focusing in particular on mitochondrial apoptotic pathways and PI3K/Akt–secreted frizzled-related protein 2 (Sfrp2) survival signaling. We demonstrated that ADMSCs subjected to H2O2 for 12 h exhibited impaired mitochondrial function and higher apoptotic rate. However, Ex-4 (1–20 nM) preconditioning for 12 h could protect ADMSCs against H2O2-mediated apoptosis in a dose-dependent manner. Furthermore, Ex-4 pretreatment upregulated the levels of superoxide dismutase and glutathione as well as downregulating the production of reactive oxygen species and malondialdehyde. Western blots revealed that increased antiapoptotic proteins Bcl-2 and c-IAP1/2 as well as decreased proapoptotic proteins Bax and cytochrome c appeared in ADMSCs with Ex-4 incubation, which inhibited the caspase-9-involved mitochondrial apoptosis pathways with evidence showing inactivation of caspase-9/3 and preservation of mitochondrial membrane potential. Furthermore, we illustrated that Ex-4 enhanced Akt phosphorylation, which increased the expression of Sfrp2. Notably, blockade of the PI3K/Akt pathway or knockdown of Sfrp2 with siRNA obviously abolished the protective effects of Ex-4 on mitochondrial function and ADMSCs apoptosis under H2O2. In summary, this study confirmed that H2O2 induced ADMSCs apoptosis through mitochondria-dependent cell death pathways, and Ex-4 preconditioning may reduce such apoptosis of ADMSCs through the PI3K/Akt–Sfrp2 pathways.  相似文献   

6.
The role of phosphoinositide 3‐kinase (PI3K) in oxidative glutamate toxicity is not clear. Here, we investigate its role in HT22 mouse hippocampal cells and primary cortical neuronal cultures, showing that inhibitors of PI3K, LY294002, and wortmannin suppress extracellular hydrogen peroxide (H2O2) generation and increase cell survival during glutamate toxicity in HT22 cells. The mitogen‐activated protein kinase kinase (MEK) inhibitor U0126 also reduced glutamate‐induced H2O2 generation and inhibited phosphorylation of extracellular signal‐regulated kinase (ERK) 1/2. LY294002 was seen to abolish phosphorylation of both ERK1/2 and Akt. A small interfering RNA (siRNA) study showed that PI3Kβ and PI3Kγ, rather than PI3Kα and PI3Kδ, contribute to glutamate‐induced H2O2 generation and cell death. PI3Kγ knockdown also inhibited glutamate‐induced ERK1/2 phosphorylation, whereas transfection with the constitutively active form of human PI3Kγ (PI3Kγ‐CAAX) triggered MEK1/2 and ERK1/2 phosphorylation and H2O2 generation without glutamate exposure. This H2O2 generation was reduced by inhibition of MEK. Transfection with kinase‐dead 3‐phosphoinositide‐dependent protein kinase 1 (PDK1‐KD) reduced glutamate‐induced ERK1/2 phosphorylation and H2O2 generation. Accordingly, cotransfection of cells with PDK1‐KD and PI3Kγ‐CAAX suppressed PI3Kγ‐CAAX‐triggered ERK1/2 phosphorylation and H2O2 generation. These results suggest that activation of PI3Kγ induces ERK1/2 phosphorylation, leading to extracellular H2O2 generation via PDK1 in oxidative glutamate toxicity.

  相似文献   


7.
The excessive and inappropriate production of reactive oxygen species (ROS) can cause oxidative stress and is implicated in the pathogenesis of lung cancer. Cyclophilin A (CypA), a member of the immunophilin family, is secreted in response to ROS. To determine the role of CypA in oxidative stress injury, we investigated the role that CypA plays in human lung carcinoma (A549) cells. Here, we showed the protective effect of human recombinant CypA (hCypA) on hydrogen peroxide (H2O2)-induced oxidative damage in A549 cells, which play crucial roles in lung cancer. Our results demonstrated that hCypA substantially promoted cell viability, superoxide dismutase (SOD), glutathione (GSH), and GSH peroxidase (GSH-Px) activities, and attenuated ROS and malondialdehyde (MDA) production in H2O2-induced A549 cells. Compared with H2O2-induced A549 cells, Caspase-3 activity in hCypA-treated cells was significantly reduced. Using Western blotting, we showed that hCypA facilitated Bcl-2 expression and inhibited Bax, Caspase-3, Caspase-7, and PARP-1 expression. Furthermore, hCypA activates the PI3K/Akt/mTOR pathway in A549 cells in response to H2O2 stimulation. Additionally, peptidyl-prolyl isomerase activity was required for PI3K/Akt activation by CypA. The present study showed that CypA protected A549 cells from H2O2-induced oxidative injury and apoptosis by activating the PI3K/Akt/mTOR pathway. Thus, CypA might be a potential target for lung cancer therapy.  相似文献   

8.
Oxidative stress plays an important role in the pathological processes of various neurodegenerative diseases. Ugonin K, a flavonoid isolated from the rhizomes of Helminthostachys zeylanica, possesses potent antioxidant property. In this study, we investigate the neuroprotective effects of ugonin K on hydrogen peroxide (H2O2)-induced apoptosis in SH-SY5Y cells. Incubation of SH-SY5Y cells with H2O2 for 24 h induced cell death measured with MTT assay. Hoechst 33258 staining confirmed that the reduced cell viability by H2O2 was due to apoptosis. In addition, H2O2 increased the expression of 17-kDa cleaved fragment of caspase-3 which could be reversed by pretreatment with ugonin K. Pretreatment with ugonin K attenuated H2O2-induced cell death in a dose-dependent manner. Neuroprotective effect of ugonin K was abolished by ERK and PI3K inhibitors. Pretreatment with JNK kinase and p38 MAPK inhibitors had no effect on ugonin K-mediated protection against H2O2-induced apoptosis. Western blotting with anti-phospho-ERK1/2 and anti-phospho-Akt (pS473) antibodies showed that ugonin K increased both ERK1/2 and Akt phosphorylation. These results suggest that ugonin K by activation of ERK1/2 and PI3K/Akt signal pathways protects SH-SY5Y cells from H2O2-induced apoptosis.  相似文献   

9.
10.
Nobiletin (3′,4′,5,6,7,8‐hexamethoxyflavone), a dietary polymethoxylated flavonoid found in Citrus fruits, has been reported to have antioxidant effect. However, the effect of nobiletin on human retinal pigment epithelium (RPE) cells induced by hydrogen peroxide (H2O2) is still unclear. Therefore, we investigated the protective effect of nobiletin against H2O2‐induced cell death in RPE cells. Our results demonstrated that nobiletin significantly increased cell viability from oxidative stress. Nobiletin inhibited H2O2‐induced ROS production and caspase‐3/7 activity in ARPE‐19 cells. Furthermore, nobiletin significantly increased Akt phosphorylation in ARPE‐19 cells exposed to H2O2. Meanwhile, LY294002, an inhibitor of PI3K/Akt, abolished the protective effect of nobiletin against H2O2‐induced decreased cell viability and increased caspase‐3/7 activity in ARPE‐19 cells. In summary, these data show that nobiletin protects RPE cells against oxidative stress through activation of the Akt‐signaling pathway. Thus, nobiletin should be an oxidant that attenuates the development of age‐related macular degeneration.  相似文献   

11.
Shen Y  Zhang Q  Gao X  Ding F 《Neurochemical research》2011,36(11):2186-2194
Achyranthes bidentata Blume is a commonly prescribed Chinese medicinal herb. Our previous studies have proved the neuroprotective function of Achyranthes bidentata polypeptides (ABPP), a major constituent from aqueous extracts of the herb. Now we have separated an active fraction, referred to as ABPP-E4, from ABPP by HPLC methods. This study aimed to investigate the possible therapeutic potential of ABPP-E4. Assessments of cell viability and apoptosis indicated that ABPP-E4 pretreatment, in a concentration-dependent manner, antagonized the cell viability loss and cell apoptosis of cultured SH-SY5Y cells deprived of serum. ABPP-E4 pretreatment also resulted in increase of Bcl-2/Bax ratio and inhibition of caspase-3 activation in the cells on exposure to serum deprivation. Signaling pathway analysis indicated that ABPP-E4 treatment stimulated the activation of Akt/Gsk3β signaling in cultured SH-SY5Y cells, and anti-apoptotic effects of ABPP-E4 could be blocked by chemical inhibition of PI3K. Taken together, all the results suggest that ABPP-E4 might exert protective effects against serum deprivation-induced neuronal apoptosis through modulation of PI3K/Akt/Gsk3β pathways.  相似文献   

12.
Propofol is a widely used intravenous anesthetic agent with antioxidant properties secondary to its phenol based chemical structure. Treatment with propofol has been found to attenuate oxidative stress and prevent ischemia/reperfusion injury in rat heart. Here, we report that propofol protects cardiac H9c2 cells from hydrogen peroxide (H2O2)-induced injury by triggering the activation of Akt and a parallel up-regulation of Bcl-2. We show that pretreatment with propofol significantly protects against H2O2-induced injury. We further demonstrate that propofol activates the PI3K-Akt signaling pathway. The protective effect of propofol on H2O2-induced injury is reversed by PI3K inhibitor wortmannin, which effectively suppresses propofol-induced activation of Akt, up-regulation of Bcl-2, and protection from apoptosis. Collectively, our results reveal a new mechanism by which propofol inhibits H2O2-induced injury in cardiac H9c2 cells, supporting a potential application of propofol as a preemptive cardioprotectant in clinical settings such as coronary bypass surgery.  相似文献   

13.
14.
15.
Cell damage and apoptosis induced by oxidative stress have been involved in various neurodegenerative diseases. This study aims to explore the neuro-protective effects of quercetin on PC12 cells apoptosis induced by hydrogen peroxide (H2O2) and the underlying mechanisms. The cell viability was detected, as well as the production of reactive oxygen species (ROS), lactate dehydrogenase (LDH) leakage, and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA) of the cells in control, H2O2 and quercetin groups. It finally turned out that quercetin might protect PC12 cells against the negative effect of H2O2 by decreasing of LDH release, ROS concentration and MDA level and regaining the GSH-Px and SOD activities. To investigate the mechanism, LY294002 was introduced, the phosphatidylinositol-3-kinase (PI3K) inhibitor. Bax/Bcl-2 ratio and Akt phosphorylation (p-Akt) were examined by Western blot analysis. The data showed that LY294002 almost had the same effects with H2O2, which was also significantly reversed by quercetin could enhance Bax/Bcl-2 ratio and adjust the p-Akt expression, which indicated quercetin might protect PC12 cells against the negative effect of H2O2 via activating the PI3K/Akt signal pathway.  相似文献   

16.
《Free radical research》2013,47(8):635-642
Abstract

Oxidative stress plays a significant role in pathophysiology of cataracts and also known to affect the phosphatidylinositol-3-kinase/ protein kinase B (PI3K/Akt) signaling pathway. This well-documented pathway is involved in protecting against apoptosis-inducing insults, including oxidative stress. Melatonin (N-acetyl-5-methoxy-tryptamine), the major secretory product of the pineal gland, was identified as a powerful free radical scavenger and a broad-spectrum antioxidant that defends against various oxidative stress-associated diseases. This study was conducted to determine whether melatonin could prevent hydrogen peroxide (H2O2)-induced oxidative stress in human lens epithelial cells (HLECs) and to elucidate the molecular pathways involved in this protection. HLECs were subjected to various concentrations of H2O2 in the presence or absence of melatonin at different concentrations. Cell viability was monitored by a 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl-tetrazoliumbromide (MTT) assay, and the apoptosis rate and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry using annexin V-FITC and propidium iodide (PI) staining. The expression levels of HO-1, Nrf-2, CAT, and MDA were measured using Western blot analysis. Akt activation was also evaluated by Western blot analysis. The data from our study showed that cells pretreated with melatonin can reduce H2O2-induced intracellular ROS generation and thus protect HLECs from cell apoptosis. Furthermore, we found that melatonin is a potent activator of Akt in HLECs. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against oxidative stress-induced cataracts.  相似文献   

17.

Background

Heme oxygenase-1 (HO-1) has potential anti-apoptotic properties. A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2- ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)] was synthesized by joining danshensu and cysteine through an appropriate linker. This study investigated if the cytoprotective properties of DSC involved the induction of HO-1.

Methods

We evaluated the cytoprotective effects of DSC on H2O2-induced cell damage, apoptosis, intracellular and mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm) loss, and apoptosis-related proteins expression and its underlying mechanisms.

Results

DSC concentration-dependently attenuated cell death, lactate dehydrogenase release, intracellular and mitochondrial ROS production, and ΔΨm collapse, modulated apoptosis-related proteins (Bcl-2, Bax, caspase-3, p53, and cleaved PARP) expression, and inhibited phosphorylation of extracellular signal-regulated kinase 1/2 in SH-SY5Y cells induced by H2O2. In addition, DSC concentration-dependently induced HO-1 expression associated with nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2), while the effect of DSC was inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, the protective effect of DSC on H2O2-induced cell death was abolished by HO-1 inhibitor ZnPP, but was mimicked by carbon monoxide-releasing moiety CORM-3 or HO-1 by-product bilirubin. Finally, DSC inhibited H2O2-induced changes of Bcl-2, Bax, and caspase-3 expression, and all of these effects were reversed by HO-1 silencing.

Conclusions

Induction of HO-1 may be, at least in part, responsible for the anti-apoptotic property of DSC, an effect that involved the activation of PI3K/Akt/Nrf-2 axis.

General significance

DSC might have the potential for beneficial therapeutic interventions for neurodegenerative diseases.  相似文献   

18.
(1) The present study was designed to investigate whether histamine is involved in the protective effect of carnosine on Aβ42-induced impairment in differentiated PC12 cells. (2) PC12 cells were exposed to Aβ42 (5 μM) for 24 h after carnosine (5 mM) applied for 18 h. Histamine receptor antagonists (diphenhydramine, zolantidine, thioperamide, clobenpropit) or histidine decarboxylase inhibitor (α-fluoromethylhistidine) were added 15 min before carnosine. Cell viability, glutamate release or cell surface expression of NMDA receptor was examined. (3) Aβ42 caused a concentration-dependent reduction of viability in PC12 cells and pretreatment with carnosine ameliorated this impairment. This amelioration was reversed by the H3 receptor antagonists thioperamide and clobenpropit, but not by either the H1 receptor antagonist diphenhydramine or the H2 receptor antagonist zolantidine. Further, α-fluoromethylhistidine, an irreversible inhibitor of histidine decarboxylase, also had no effect. In the presence of Aβ42, carnosine significantly decreased glutamate release and carnosine increased the surface expression of NMDA receptor. (4) These results indicate that the mechanism by which carnosine attenuates Aβ42-induced neurotoxicity is independent of the carnosine–histidine–histamine pathway, but may act through regulation of glutamate release and NMDA receptor trafficking.  相似文献   

19.
The mediator neuroprotectin D1 (NPD1) is an enzymatic derivative of the omega-3 essential fatty acid docosahexaenoic acid. NPD1 stereoselectively and specifically binds to human retinal pigment epithelium (RPE) cells and neutrophils. In turn, this lipid mediator induces dephosphorylation of Bcl-xL in a PP2A-dependent manner and induces PI3K/Akt and mTOR/p70S6K pathways leading to RPE cell survival during oxidative stress-induced apoptosis. As a proof of principle of its systemic in vivo bioactivity, NPD1 attenuates laser-induced choroidal neovascularization in mice. Using human neural cells transfected with amyloid precursor protein (APP)sw (Swedish double mutation APP695sw, K595N, M596L), NPD1 was shown to regulate secretase-mediated production of Aβ peptide, downregulates pro-inflammatory gene expression, and promotes cell survival. In human neural cells overexpressing beta-amyloid precursor protein (βAPP), the lipid mediator suppressed Aβ42 shedding by downregulating β-secretase (BACE1) while activating the α-secretase (ADAM10), thus shifting the βAPP cleavage from the noxious amyloidogenic pathway into a non-amyloidogenic, neurotrophic pathway. Furthermore, downregulation of Aβ42 peptide release by NPD1 may be dependent upon PPARγ activation. In conclusion, NPD1 exhibits anti-inflammatory, anti-amyloidogenic, and anti-apoptotic bioactivities in human neural cells in part via PPARγ signaling and through the targeting of α- and β-secretase systems.  相似文献   

20.
Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号