首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Aims: To develop a fast, convenient, inexpensive and efficient Escherichia coli transformation method for changing hosts of plasmids, which can also facilitate the selection of positive clones after DNA ligation and transformation. Methods and Results: A single fresh colony from plasmid‐containing donor strain is picked up and suspended in 75% ethanol. Cells are pelleted and resuspended in CaCl2 solution and lysed by repetitive freeze–thaw cycles to obtain plasmid‐containing cell lysate. The E. coli recipient cells are scraped from the lawn of LB plate and directly suspended in the plasmid‐containing cell lysate for transformation. Additionally, a process based on colony‐to‐lawn transformation and protein expression was designed and conveniently used to screen positive clones after DNA ligation and transformation. Conclusions: With this method, a single colony from plasmid‐containing donor strain can be directly used to transform recipient cells scraped from lawn of LB plate. Additionally, in combination with this method, screening of positive clones after DNA ligation and transformation can be convenient and time‐saving. Significance and Impact of the Study: Compared with current methods, this procedure saves the steps of plasmid extraction and competent cell preparation. Therefore, the method should be highly valuable especially for high‐throughput changing hosts of plasmids during mutant library creation.  相似文献   

2.
The transformation of Zymomonas mobilis by plasmid DNA was achieved using a modification of the CaCl2 method for Escherichia coli. The highest frequency of transformation obtained was 5 × 103 transformants/μg DNA. The success of the method depended upon the use of a plasmid which is a cointegrate between a Z. mobilis cryptic plasmid and an E. coli plasmid carrying two selectable drug resistance markers.  相似文献   

3.
Wang X  Li M  Yan Q  Chen X  Geng J  Xie Z  Shen P 《Current microbiology》2007,54(6):450-456
The results presented in this article show that direct plasmid transfer from Escherichia coli carrying shuttle plasmid to Bacillus subtilis occurred when close contact between the two species was established by mixing E. coli and B. subtilis onto selective agar plates. The data demonstrate that the production of resistant colonies by plasmid transformation through cell contact was DNase I sensitive and dependent on transformable B. subtilis strains. Furthermore, another observation indicated that the E. coli strain is able to affect the transformation capability of B. subtilis. It is assumed that the donor strain is a momentous factor for taking up plasmid DNA. This conclusion is significant in the assessment of both the possibility of intercellular DNA transfer in natural habitats of micro-organisms and the risk of the application of genetically engineered micro-organisms.  相似文献   

4.
In the present study, Escherichia coli cells exhibited antibiotic resistance after transformation with exogenous plasmid DNA adsorbed onto chrysotile particles during agar-exposure. We previously demonstrated penetration of E. coli by chrysotile particles during agar-exposure. To further investigate the mechanism by which transformation of E. coli is achieved through the use of chrysotile fibers, the interaction between E. coli cells and chrysotile was examined during agar-exposure. Dispersion of chrysotile particles within the chrysotile solution was analyzed by flow cytometry. A suspension containing E. coli cells expressing blue fluorescence protein and chrysotile particles was exposed to agar using stirring apparatus, which allowed a constant vertical reaction force to be applied to the surface of the gel. Fluorescence microscopy was then used to illustrate the adsorption of fluorescein isothiocyanate-conjugated DNA oligomers to chrysotile. Larger aggregates were observed when increasing concentrations of chrysotile were added to the solution. With prolonged exposure, during which surface moisture diffused into the agar gel, greater concentrations of chrysotile were observed on the agar surface. In addition, chrysotile aggregates exceeding 50 m developed on the agar surface. They were shaped like a chestnut bur. The chrysotile aggregates penetrated the cell membranes of adherent E. coli cells during agar-exposure due to sliding friction forces generated at the interface of the agar and the stirring stick. E. coli cells thus acquired plasmid DNA and antibiotic resistance, since the plasmid DNA had been adsorbed onto the chrysotile particles. The inoculation of plasmid DNA into E. coli cells demonstrates the usefulness of chrysotile for E. coli transformation.  相似文献   

5.
The ability to introduce individual molecules of plasmid DNA into cells by transformation has been of central importance to the recent rapid advancement of plasmid biology and to the development of DNA cloning methods. Molecular genetic manipulation of bacteria requires the development of plasmid-mediated transformation systems that include (1) chemical transformation, (2) electro-transformation, (3) biolistic transformation, and (4) sonic transformation, leading to the introduction of exogenous plasmid DNA into bacterial cells. In this review, the manipulation properties and transformation efficiencies of these techniques are described. In addition to these methods, a conceptually novel transformation technique, namely the hydrogel exposure method, was developed. The hydrogel exposure method, based on the Yoshida effect, provides a significant advance over chemical means for transforming many strains of Escherichia coli and a variety of other bacterial species. The new term “tribos transformation” has been proposed for this novel technique. We also determined that, compared to conventional methods, the hydrogel exposure method is a novel and convenient method by which to transform bacteria.  相似文献   

6.
DNA extracted and purified for vaccination, gene therapy or transfection of cultured cells has to meet different criteria. We describe herein, a scalable process for the primary extraction of plasmid DNA suitable for transient expression of recombinant protein. We focus on the scale up of alkaline lysis for the extraction of plasmid DNA from Escherichia coli, and use a simple stirred tank reactor system to achieve this. By adding a series of three precipitations (including a selective precipitation step with ammonium acetate) we enrich very quickly the plasmid DNA content in the extract. The process has been thus far used to extract up to 100 mg of plasmid from 1.5 l of clarified lysate, corresponding to an E.coli bioreactor fermentation of 3 l. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary We have worked out conditions for the study of competence development and genetic transformation in Streptococcus oralis NCTC 11427 (type strain), a species that contains choline in the cell wall. The peak of competence was found at the early exponential phase of growth and the optimal conditions for transformation were achieved with shuttle plasmids prepared from S. pneumoniae or from Escherichia coli serving as donor DNA. Transformation with dye-bouyant density gradient purified plasmid preparations followed first-order kinetics. The pneumococcal amidase can be expressed in S. oralis harbouring a plasmid carrying the lytA gene. This enzyme lysed the cell wall of the transformed cell in the presence of detergents.  相似文献   

8.
Restriction enzyme mediated integration is a widely used and effective method for insertional mutagenesis in Dictyostelium discoideum. In this method, plasmid rescue is used to clone the genomic deoxyribonucleic acid (DNA) sequences that flank the insertion site. For this to be effective, it is necessary to first find a convenient restriction enzyme site within the genomic DNA. This is a time-consuming process that requires Southern blot analysis of the mutant DNA. In addition, plasmid rescue requires transformation into highly competent Escherichia coli. Problems can arise owing to unstable genomic sequences, damage to the plasmid DNA and exogenous plasmid contamination. We have established a simple and rapid polymerase chain reaction-based technique that works for all mutants and circumvents the need for Southern blot analysis and plasmid rescue.  相似文献   

9.
细菌通过调控第二信使环二鸟苷酸(cyclic diguanylate, c-di-GMP)而促进其适应环境、存活及致病。【目的】本研究旨在建立有效的c-di-GMP水平检测方法,为大肠杆菌内c-di-GMP水平检测提供便利条件。【方法】根据c-di-GMP核糖开关受体的调控方式、荧光报告基因等设计引物,通过重叠聚合酶链反应(overlap polymerase chain reaction, overlap PCR)和同源重组酶构成基于核糖开关的双荧光素报告质粒pAmCherry-Vc2EGFP(pACVcE),然后构建c-di-GMP代谢基因过表达菌株和缺失菌株,利用pACVcE检测大肠杆菌内c-di-GMP水平。【结果】OverlapPCR扩增产物与目的靶序列一致,测序结果证明pACVcE序列正确。表达c-di-GMP合成酶DgcZ的大肠杆菌胞内c-di-GMP水平显著升高,而表达c-di-GMP降解酶PdeK的大肠杆菌胞内c-di-GMP水平显著降低。禽致病性大肠杆菌的胞内c-di-GMP水平检测发现c-di-GMP降解酶基因pdeK缺失后胞内的c-di-GMP水平显著升高。【结...  相似文献   

10.
Summary Electroporation offers a fast, efficient and reproducible way to introduce DNA into bacteria. We have successfully used this technique to transform two commercially important strains of Bradyrhizobium japonicum, the nitrogen-fixing soybean symbiont. Initially, electroporation conditions were optimized using plasmid DNA which had been prepared from the same B. japonicum strain into which the{imDNA was to b}e transformed. Efficiencies of 105-106 transformants/g DNA were obtained for strains USDA 110 and 61A152 with ready-to-use frozen cells. Successful electroporation of B. japonicum with plasmid DNA prepared from Escherichia coli varied with the E. coli strain from which the plasmid was purified. The highest transformation efficiencies (104 transformants/g DNA) were obtained using DNA prepared from a dcm dam strain of E. coli. This suggests that routine isolation of DNA from an E. coli strain incapable of DNA modification should help in increasing transformation efficiencies for other strains of bacteria where DNA restriction appears to be a significant obstacle to successful transformation. We have also monitored the rate of spontaneous mutation in electroporated cells and saw no significant difference in the frequency of streptomycin resistance for electroporated cells compared to control cells.  相似文献   

11.
Peng H  Fu B  Mao Z  Shao W 《Biotechnology letters》2006,28(23):1913-1917
Electrotransformation of Thermoanaerobacter ethanolicus JW200 was achieved using the plasmid, pTE16, and a pUC-based suicide vector, pTEA2. The construct pTE16 is based on the Escherichia coli-Clostridium perfringens shuttle vector pJIR715 and contains a thermostable chloramphenicol (Cm) resistance cassette. Evidence supporting transformation was provided by extracting plasmid pTE16 from presumptive transformants of T. ethanolicus and by PCR specific to the chloramphenicol acetyltransferase (cat) gene on the vector pTEA2. Transformation frequencies of plasmid pTE16 and pTEA2 were 50 ± 7.4 and 30 ± 4.2 transformants per μg plasmid DNA. The results provide the first unequivocal gene transfer method functional in T. ethanolicus.  相似文献   

12.
Cheng L  Sun X  Yi X  Zhang Y 《Biotechnology letters》2011,33(8):1559-1564
Large-scale transient gene expression of recombinant protein in mammalian cells requires a great amount of plasmid. An economical method for large-scale plasmid preparation, based on fed-batch fermentation and an improved plasmid extraction process, has been established. Fed-batch growth of E. coli was carried out in 5 l bioreactor by controlling the glucose concentration below 1 g l−1 after the feeding was started. Plasmid yields of 490 and 580 mg l−1 were achieved with two strains of E. coli cells bearing pCEP4-EGFP and pID-EG respectively, representing 24.5- and 26-fold increases over those of the batch culture in shake-flask. To improve the procedure for large-scale preparation of plasmid DNA, addition of RNase to resuspension buffer and ultrafiltration of clarified lysate were adopted, and the quality of the resultant plasmid was comparable to that of commercial kit as disclosed in the small-scale transient transfection. This plasmid production process has great potential in the large scale transient gene expression which needs a large quantity of plasmid DNA.  相似文献   

13.
Yao  Wensheng  Yang  Yunliu  Chiao  Juishen 《Current microbiology》1994,29(4):223-227
An electro-transformation system has been developed forNocardia asteroides andNocardia corallina by using aNocardia-Escherichia coli shuttle vector. The shuttle vector, named pCY104, was constructed by joining a 2.5-kb crypticN. asteroides plasmid pCY101 with theE. coli plasmid pIJ4625. The resistance genes for kanamycin, chloramphenicol, and thiostrepton on plasmid pCY104 were expressed inN. asteroides andN. corallina. The transformation method was optimized forN. asteroides, and transformation efficiency of 8×104 transformants per g plasmid DNA was achieved routinely.  相似文献   

14.
Summary A rapid method is described for the isolation of plasmid DNA from Escherichia coli and Pseudomonas putida. The effect of heating the cell preparation during plasmid extraction is discussed in relationship to the final plasmid yield.  相似文献   

15.
A scale-flexible and cost-efective protocol for plasmid preparation is described to cover miniprep and midiprep scale work in a microcentriguge format for analysis of recombinant clones. this protocol relies on a modified alkaline lysis of Escherichia coli cells and subsequent purification of plasmid DNA with no organic extraction and alcohol precipitation. It can process up to 20 mL of E. coli cells carrying 3–10 kbp plasmid vectors in <10 min. Flexprep delivers sufficient yield and purity of plasmid DNA for routine applications including restriction enzyme digestion and fluorescent automated sequencing.  相似文献   

16.
Summary A technique has been developed which allows the isolation of random deletions extending from unique restriction enzyme sites in plasmid DNA molecules. The method involves transformation of E. coli cells with linear plasmid DNAs generated by restriction enzyme cleavage. We have used this technique to map DNA transfer genes in the tra control region of F sex factor DNA. Deletions within EcoRI fragment f6 of F DNA have been isolated and used to assign physical locations to tra genes by a combination of genetic complementation tests, restriction enzyme analysis, DNA heteroduplexing and the analysis of the proteins synthesised in minicells and in vitro. Deletion analysis has also allowed the identification of the traK gene product.  相似文献   

17.
Summary The promiscuous IncQ plasmid pKT210 (Cmr, Smr) is efficiently transferred by transpecific conjugation from Escherichia coli to the facultatively heterotrophic cyanobacterium Synechocystis PCC6803 when mobilized by a helper plasmid coding for IncP transfer functions. The IncQ plasmid is stably maintained in the cyanobacterium as an autonomously replicating multicopy plasmid with no detectable structural alterations and can be recovered by transformation back to E. coli when using a mcrA mcrB host. Thus, the replicative host-range of IncQ plasmids extends beyond purple bacteria to the distinct procaryotic taxon of cyanobacteria, allowing the use of these small plasmids as convenient cloning vectors in Synechocystis PCC6803 and presumably also in cyanobacteria that are not amenable to genetic transformation. In contrast, an IncQ plasmid bearing the TRP1 gene of Saccharomyces cerevisiae failed to replicate when transferred to that yeast by transformation.  相似文献   

18.
Transformation efficiencies as high as 107 transformants g–1 DNA have been previously reported for pseudomonads using electroporation protocols established for E. coli with plasmid DNAs prepared from methylation proficient E. coli hosts. We report here a protocol for electroporation of plasmid DNAs into a biocontrol strain of Pseudomonas syringae which could not be electroporated by standard E. coli methods. Transformation efficiencies of 107 or higher were obtained with DNA recovered from initial P. syringae transformation or with DNA prepared from methylation deficient E. coli. Both plasmids used in this study were stably maintained in the absence of selection for at least 50 generations.  相似文献   

19.
Summary We have cloned the hisH tyrA wild-type genes of Bacillus subtilis with the aid of the chimeric plasmid pBJ194, which replicates both in B. subtilis and Escherichia coli. Primary cloning was done in E. coli. The original E. coli clone, carrying the recombinant plasmid (pGR1) which complements hisH tyrA mutants of B. subtilis, was selected directly from a mixture of plated E. coli clones by replicaplating these clones onto minimal agar plates without tyrosine spread just before with competent B. subtilis cells. After overnight incubation clusters of small colonies had developed exclusively in the E. coli [pGR1] colony prints.The Tyr+ minicolonies were shown to be B. subtilis carrying pGR1 because (i) their appearance depended linearly on the number of B. subtilis cells plated, (ii) they produced extracellular protease and amylase and (iii) plasmids could be reisolated from the minicolonies and used to transform B. subtilis recE4 tyrA1 both to Cmr and Tyr+.Plasmid pGR1 transfer through replica plating was compared with plasmid transfer in liquid. Both systems depended on transformable B. subtilis strains and were sensitive to DNAseI. However, whereas integration of the tyrA + gene into the chromosome and concomittant loss of plasmids occurred frequently during regular plasmid transformation of Rec+ B. subtilis, this was a rare event during plasmid transfer through replica plating.  相似文献   

20.
A rapid and simple method for preparation of highly efficient Ochrobactrum anthropi electrocompetent cells has been developed. The efficiency of transformation increased 200-fold when the cells were prepared from liquid culture compared to agar plates. Effects of different conditions, including cell density, electric field strength, resistance and plasmid size were evaluated to develop an electroporation protocol. The electrocompetent O. anthropi prepared by this method were 9-fold more efficient than commercial sources of competent Escherichia coli. The method described here will enhance the genetic manipulation of Ochrobactrum as a bioremediation tool and a biopesticide agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号