首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A report of the European C. elegans 2008 meeting, Seville, Spain, 29 March-2 April 2008.  相似文献   

3.
4.
5.

Background  

C. elegans has been established as a powerful genetic system. Use of a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of use in large-scale growth and screening of animals.  相似文献   

6.
7.
In this paper we present a new method for detecting block duplications in a genome. It is more stringent than previous ones in that it requires a more rigorous definition of paralogous genes and that it requires the paralogous proteins on the two blocks to be contiguous. In addition, it provides three criterion choices: (1) the same composition (i.e., having the same paralogues in the two windows), (2) the same composition and gene order, and (3) the same composition, gene order, and gene orientation. The method is completely automated, requiring no visual inspection as in previous methods. We applied it to analyze the complete genomes of S. cerevisiae and C. elegans. In yeast we detected fewer duplicated blocks than previously reported. In C. elegans, however, we detected more block duplications than previously reported, indicating that although our method has a more stringent definition of block duplication than previous ones, it may be more sensitive in detection because it considers every possible window rather than only fixed nonoverlapping windows. Our results show that block duplication is a common phenomenon in both organisms. The patterns of block duplication in the two species are, however, markedly different. The yeast shows much more extensive block duplication than the nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in the yeast the majority of block duplications occurred between chromosomes, while in the nematode most block duplications occurred within chromosomes.  相似文献   

8.
Homozygosity for a mutation in the idi-1 gene of Caenorhabditis elegans results in paralysis during the first larval stage, followed by an arrest of growth and development late in the first larval stage. Apoptotic corpses, which are apparently the result of normal programmed cell death, persist in the arrested larvae. In genetic mosaics, an additional defect becomes evident upon examination with Nomarski optics: cells that are genotypically mutant enlarge, and their cytoplasm becomes dimpled. Electron microscopy indicates that the dimpling reflects an accumulation of many enlarged lysosomes and autophagosomes. The mosaics demonstrate that the lethal mutation acts cell autonomously with respect to this vesicular abnormality and that there is a maternal effect with respect to the time of developmental arrest of mutant progeny. Cloning of the gene reveals that it is the only gene in C. elegans for isopentenyl-diphosphate isomerase, an enzyme that is important for the synthesis of lipophilic molecules, including farnesyl and geranyl diphosphates.  相似文献   

9.
10.
Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis.  相似文献   

11.
Summary A liquid-based assay was used to evaluate the ability of Yersinia pseudotuberculosis to form a bacterial biofilm on the nematode Caenorhabditis elegans. After 3 days of incubation in the liquid assay a biofilm was clearly visible by light microscopy on both the head and vulva region of the worms. At times, the biofilm formation on the vulva appeared to prevent the laying of eggs by the adult hermaphrodite; the eggs would later hatch inside of the worm. One possible explanation for the biofilm formation observed on the vulva may be the increased motion of the cuticle surrounding the vulva when the worm is immersed in a liquid culture. This is the first report of biofilm formation on the vulva of C. elegans.  相似文献   

12.
Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.  相似文献   

13.
14.
A report on the 15th Biennial International C. elegans Conference, Los Angeles, USA, 25-29 June 2005.  相似文献   

15.
Part of the challenge of the post-genomic world is to identify functional elements within the wide array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and functional conservation is not clear. Here, we use a comparative approach to examine questions of evolutionary rates and conserved function within the guanine nucleotide-binding protein (G protein) gene family in nematodes of the genus Caenorhabditis. In particular, we show that, in cases where the Caenorhabditis elegans ortholog shows a loss-of-function phenotype, G protein genes of C. elegans and Caenorhabditis briggsae diverge on average three times more slowly than G protein genes that do not exhibit any phenotype when mutated in C. elegans, suggesting that genes with loss of function phenotypes are subject to stronger selective constraints in relation to their function in both species. Our results also indicate that selection is as strong on G proteins involved in environmental perception as it is on those controlling other important processes. Finally, using phylogenetic footprinting, we identify a conserved non-coding motif present in multiple copies in the genomes of four species of Caenorhabditis. The presence of this motif in the same intron in the gpa-1 genes of C. elegans, C. briggsae and Caenorhabditis remanei suggests that it plays a role in the regulation of gpa-1, as well as other loci.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
The kuzbanian gene encodes a metalloprotease of the ADAM family that is involved in Notch signalling. However, its precise role is a matter of controversy. While original reports concluded that kuz is required on the receiving side of the Notch signalling pathway, a more recent report suggests that Kuz is required on the signal-emitting side for the generation of an active secreted form of the ligand Delta. In this scenario, kuz should act cell non-autonomously. A third possibility is that Kuz is required on the signal-emitting as well as the receiving side. Here I present the clonal analysis of kuz in Drosophila wing. The results show that Kuz acts on the receiving side of the pathway and is not required for Delta signalling. This further confirms the hypothesis that Kuz is required for the release of the intracellular domain of Notch that transduces the signal to the nucleus. The presented results complement recent data that indicate that Kuz can perform the S2 proteolytic cleavage of the Notch receptor that is required for its activation.  相似文献   

17.
18.

Background  

The gene daf-2 encodes the single insulin/insulin growth factor-1-like receptor of Caenorhabditis elegans. The reduction-of-function allele e1370 induces several metabolic alterations and doubles lifespan.  相似文献   

19.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

20.
The publication of the draft genome sequence of Caenorhabditis briggsae improves the annotation of the genome of its close relative Caenorhabditis elegans and will facilitate comparative genomics and the study of the evolutionary changes during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号