首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The subcellular distribution of the enzymes of de novo pyrimidine nucleotide biosynthesis was investigated in pea (Pisum sativum L. cv Progress No. 9) leaves. Aspartate carbamoyltransferase, the committed step of the pathway, was found to be strictly confined to the chloroplasts. Dihydro-orotase, orotate phosphoribosyl transferase, and orotidine decarboxylase activities were also found only in the plastids. The remaining enzyme of the pathway, dihydroorotate dehydrogenase, was shown to be mitochondrial.  相似文献   

2.
3.
4.
The ability of niacin to relieve the growth-inhibiting effect of hyperoxia on Escherichia coli can be attributed to the dioxygen sensitivity of quinolinate synthetase. The activity of this enzyme within E. coli was diminished by exposure of the cells to 4.2 atm O2, while the activity in extracts was rapidly decreased by 0.2 atm O2. Neither catalase nor superoxide dismutase afforded detectable protection against the inactivating effect of O2, indicating that H2O2 and O2- were not significant intermediates in this process. Nevertheless, H2O2 at 1.0 mM did inactivate quinolinate synthetase, even under anaerobic conditions and in the absence of catalatic activity which might have generated O2. Addition of paraquat to aerobic cultures of E. coli caused an inactivation of quinolinate synthetase, which may be explained in terms of an increase in the production of H2O2. The O2-dependent inactivation of quinolinate synthetase in extracts was gradually reversed during anaerobic incubation and this reactivation was blocked by alpha, alpha'-dipyridyl or by 1,10-phenanthroline. The sequence of the quinolinate synthetase "A" protein contains a--cys-w-x-cys-y-z-cys--sequence, which is characteristic of (Fe-S)4-containing proteins. This sequence, together with the effect of the Fe(II)-chelating agents, suggests that the O2-sensitive site of quinolinate synthetase is an iron-sulfur cluster which is essential for the dehydration reaction catalyzed by the A protein.  相似文献   

5.
6.
7.
Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation.

Structured summary of protein interactions

EXP-1 and PfAK2colocalize by fluorescence microscopy (View interaction)PfAK2 and SERPcolocalize by fluorescence microscopy (View interaction)  相似文献   

8.
9.
Plant Cell, Tissue and Organ Culture (PCTOC) - The effect of several parameters on trans-resveratrol extracellular production in Vitis vinifera cv Monastrell suspension cultured cells elicited with...  相似文献   

10.
We reported recently that internalization of the plant blue light receptor phototropin 1 (phot1) from the plasma membrane in response to irradiation is reliant on receptor autophosphorylation. Pharmacological interference and co-immunoprecipitation analyses also indicated that light-induced internalization of phot1 involves clathrin-dependent processes. Here, we describe additional pharmacological studies that impact the subcellular localization and trafficking of Arabidopsis phot1. Alterations in the microtububle cytoskeleton led to dramatic differences in phot1 localization and function. Likewise, inhibition of phosphatidic acid (PA) signaling was found to impair phot1 localization and function. However, action of PA inhibition on phot1 function may be attributed to pleiotropic effects on cell growth. While phot1 kinase activation is necessary to stimulate its internalization, autophosphorylation is not required for phot1 turnover in response to prolonged blue light irradiation. The implications of these findings in regard to phot1 localization and function are discussed.Key words: phototropin 1 (phot1), phototropism, subcellular trafficking, autophosphorylation, protein turnover  相似文献   

11.
12.
The subcellular localization of hexose phosphorylating activity in extracts of pea stems has been studied by differential centrifugation and sucrose density gradient centrifugation. The hexokinase (EC 2.7.1.1) was associated with the mitochondria, whereas fructokinase (EC 2.7.1.4) was in the cytosolic fraction. Some properties of the mitochondrial hexokinase were studied. The enzyme had a high affinity for glucose (Km 76 micromolar) and mannose (Km 71 micromolar) and a relatively low affinity for fructose (Km 15.7 millimolar). The Km for MgATP was 180 micromolar. The addition of salts stimulated the activity of the hexokinase. Al3+ was a strong inhibitor at pH 7 but not at the optimum pH (8.2). The enzyme was not readily solubilized but, in experiments with intact mitochondria, was susceptible to proteolysis. A location on the outer mitochondrial membrane is suggested for the hexokinase of pea stems.  相似文献   

13.
14.
Amylolytic enzymes of Arabidopsis leaf tissue were partially purified and characterized. Endoamylase, starch phosphorylase, d-enzyme (transglycosylase), and possibly exoamylase were found in the chloroplasts. Endoamylase, fraction A2, found only in the chloroplast, was resolved from the exoamylases by chromatography on a Mono Q column and migrated with an RF of 0.44 on 7% polyacrylamide gel electrophoresis. Exoamylase fraction, A1, has an RF of 0.23 on the polyacrylamide gel. Viscometric analysis showed that A1 has a slope of 0.013, which is same as that of A3, the extrachloroplastic amylase. A1, however, can be distinguished from A3 by having much higher amylolytic activity in succinate buffer than acetate buffer, and having much less reactivity with amylose. A1 probably is also localized in the chloroplast, and contributes to the 30 to 40% higher amylolytic activity of the chloroplast preparation in succinate than acetate buffer at pH 6.0. The high activity of d-enzyme compared to the amylolytic activity in the chloroplast suggests that transglycosylation probably has an important role during starch degradation in Arabidopsis leaf. Extrachloroplastic amylase, A3, has an RF of 0.55 on 7% electrophoretic gel and constitutes 80% of the total leaf amylolytic activity. The results of substrate specificity studies, action pattern and viscometric analyses indicate that the extrachloroplastic amylases are exolytic.  相似文献   

15.
16.
Flavanone synthase, chalcone-flavanone isomerase and UDP-glucose; anthocyanidin-3-O-glucosyltransferase activities of protoplasts and subcellular fractions of protoplasts of Hippeastrum and Tulipa were investigated. Subcellular fractions studied were intact vacuoles, cytosol and particulate components of protoplasts less the vacuole. The cytosol fraction had the highest activity of the three enzymes studied. Results similar to those found for Hippeastrum were obtained with fractions from leaves and petals of Tulipa. The increase in flavanone synthase activity in the cytosol fraction from petals of Hippeastrum during development paralleled the increase in anthocyanin content of the petals.  相似文献   

17.
Mutations at the nadI locus affect expression of the first two genes of NAD synthesis, nadA and nadB, which are unlinked. Genetic data imply that the regulatory effects of nadI mutations are not due to indirect consequences of physiological alterations. Two types of mutations map in the nadI region. Common null mutations (nadI) show constitutive high-level expression of the nadB and nadA genes. Rare nadIs mutations cause constitutive low-level expression of nadB and nadA. Some nadIs mutations shut off the expression of the biosynthetic genes sufficiently to cause a nicotinic acid auxotrophy. Spontaneous revertants of auxotrophic nadIs mutants have a NadI- phenotype, including some with deletions of the nadI locus. The nadI locus encodes a repressor protein acting on the unlinked nadA and nadB genes.  相似文献   

18.
19.
20.
NAD kinase was purified 180-fold from Bacillus licheniformis to determine the role it plays in NADP turnover in this organism. The enzyme was found to have a pH optimum of 6.8 and an apparent K m for NAD of 2.7 mM. The ATP saturation curve was not hyperbolic; 5.5 mM ATP was required to reach half maximal activity. Both Mn2+ and Ca2+ could be substituted for Mg2+. Several compounds including nicotinic acid, nicotinamide, nicotinamide mononucleotide, quinolinic acid, NADPH, ADP, AMP and cyclic AMP did not affect NAD kinase activity. In contrast, the enzyme was inhibited by NADP at concentrations typically found in logarithmic cells of B. licheniformis. This inhibition was competitive with NAD and had a K i of 0.13 mM. It is suggested that in vivo NAD kinase activity is highly dependent on the concentrations of NAD and ATP and the proportion of oxidized and reduced NADP.This paper is dedicated to Sydney C. Rittenberg on the occassion of his retirement, with respect and much affection, in appreciation for his friendship and years of distinguished service as a teacher and scientist  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号