首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A bacterial strain WJ-98 found to produce active extracellular keratinase was isolated from the soil of a poultry factory. It was identified asParacoccus sp. based on its 16S rRNA sequence analysis, morphological and physiological characteristics. The optimal culture conditions for the production of keratinase byParacoccus sp. WJ-98 were investigated. The optimal medium composition for keratinase production was determined to be 1.0% keratin, 0.05% urea and NaCl, 0.03% K2HPO4, 0.04% KH2PO4, and 0.01% MgCl2·6H2O. Optimal initial pH and temperature for the production of keratinase were 7.5 and 37°C, respectively. The maximum keratinase production of 90 U/mL was reached after 84 h of cultivation under the optimal culturing conditions. The keratinase fromParacoccus sp. WJ-98 was partially purified from a culture broth by using ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, followed by gel filtration chromatography on Sephadex G-75. Optimum pH and temperature for the enzyme reaction were pH 6.8 and 50°C, respectively and the enzymes were stable in the pH range from 6.0 to 8.0 and below 50°C. The enzyme activity was significantly inhibited by EDTA, Zn2+ and Hg2+. Inquiry into the characteristics of keratinase production from these bacteria may yield useful agricultural feed processing applications.  相似文献   

2.
Linoleic acid isomerase from Lactobacillus delbrueckii subsp. bulgaricus 1.1480 was purified by DEAE ion-exchange chromatography and gel filtration chromatography. An overall 5.1% yield and purification of 93-fold were obtained. The molecular weight of the purified protein was ~41 kDa which was analyzed by SDS-PAGE. The purified enzyme was immobilized on palygorskite modified with 3-aminopropyltriethoxysilane. The immobilized enzyme showed an activity of 82 U/g. The optimal temperature and pH for the activity of the free enzyme were 30 °C and pH 6.5, respectively; whereas those for the immobilized enzyme were 35 °C and pH 7.0, respectively. The immobilized enzyme was more stable than the free enzyme at 30–60 °C, and the operational stability result showed that more than 85% of its initial activity was retained after incubation for 3 h. The K m and V max values of the immobilized enzyme were found to be 0.0619 mmol l−1 and 0.147 mmol h−1 mg−1, respectively. The immobilized enzyme had high operational stability and retained high enzymatic activity after seven cycles of reuse at 37 °C.  相似文献   

3.
A keratinolytic protease activity secreted by Kocuria rosea when cultured in bioreactors using feathers as unique carbon and nitrogen source was purified and characterized. This novel keratinase activity was purified from the bioreaction broth growing media to apparent homogeneity after single step, (24-fold purification with a high yield of 54%) using DEAE column chromatography. The native molecular mass of the enzyme determined by gel filtration chromatography was 240 kDa. K. rosea extracellular keratinase was stable in a broad range of pH (8–11) and temperature (10–60 °C) profile with optimums at pH 10 and 40 °C. Crystalline soybean trypsin inhibitor (type I-S), 4-(2-aminoethyl) benzenesulfonyl floride (AEBSF) and chymostatin, strongly inhibited the keratinolytic activity indicating that the keratinase belongs to the serine protease family. The Km for the soluble keratin degradation from feathers was 242 μM. The enzyme was resistant to denaturing or reducing agents such as dithiotreitol and 2-mercaptoethanol. All of the biochemical characteristics, raising the potential use of this enzyme in numerous industrial applications.  相似文献   

4.
Two genes that encode α-amylases from two Anoxybacillus species were cloned and expressed in Escherichia coli. The genes are 1,518 bp long and encode 506 amino acids. Both sequences are 98% similar but are distinct from other well-known α-amylases. Both of the recombinant enzymes, ASKA and ADTA, were purified using an α-CD–Sepharose column. They exhibited an optimum activity at 60°C and pH 8. Both amylases were stable at pH 6–10. At 60°C in the absence of Ca2+, negligible reduction in activity for up to 48 h was observed. The activity half-life at 65°C was 48 and 3 h for ASKA and ADTA, respectively. In the presence of Ca2+ ions, both amylases were highly stable for at least 48 h and had less than a 10% decrease in activity at 70°C. Both enzymes exhibited similar end-product profiles, and the predominant yield was maltose (69%) from starch hydrolysis. To the best of our knowledge, most α-amylases that produce high levels of maltose are active at an acidic to neutral pH. This is the first report of two thermostable, alkalitolerant recombinant α-amylases from Anoxybacillus that produce high levels of maltose and have an atypical protein sequence compared with known α-amylases.  相似文献   

5.
《Process Biochemistry》2010,45(8):1236-1244
Keratins are important bioresources for apparels and feedstuffs, but recalcitrant to common enzymes. Now, it is popular and essential to develop keratinolytic enzymes for environmental prevention and improvement of keratin product quality. In the study, the medium optimization, purification, characterization and application of the keratinase from a newly isolated Chryseobacterium L99 sp. nov. were conducted. Exogenous sucrose, malt sugar, glucose, starch, tryptone, Mg2+, Zn2+, Ca2+ and Cu2+ could promote the keratinase production, while exogenous urea, NH4Cl and yeast extract exhibited strong inhibition effects. Response surface methodology predicted a maximum keratinase yield of 213.8 U mL−1, at (g L−1) sucrose 16.8, MgCl2·6H2O 1.9, feather keratin 40.0, NaH2PO4·2H2O 6.0 and K2HPO4·6H2O 1.0, where dry cell weight nearly had a minimum 8.58 g L−1. Then, a serine keratinase about 33 kDa was purified, and its optimal activity was acquired at 40 °C and pH 8.0 with K+, Zn2+or Co2+. Compared with Savinase 16 L and transglutaminase, the L99 keratinase could efficient prevent shrinkage and eliminate directional frictional effect of wool, indicating it as a promising prospect in the biotreatment of wool fibres.  相似文献   

6.
The fungus Scopulariopsis brevicaulis was isolated from poultry farm soil at Namakkal, India. The extracellular keratinase from this fungus was purified to homogeneity by ammonium sulphate precipitation and procedure involving DEAE-Cellulose and Sephadex G-100 chromatographic techniques. The purified enzyme was formed from a monomeric protein with molecular masses of 39 and 36 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 8.0 and the optimum temperature at pH 8.0 was 40 °C. The activity of purified keratinase with respect to pH, temperature and salt concentration was optimized by Box–Behnken design experiment. It was shown that a second-order polynominal regression model could properly interpret the experimental data with an R2-value of 0.9957 and an F-value of 178.32, based on the maximum enzyme activity examined. Calculated optimum conditions were predicted to confer a 100% yield of keratinase activity with 5 mM CaCl2, pH 8.0 and at a temperature of 40 °C. The enzyme was strongly inhibited by PMSF, which suggests a serine residue at or near an active site. The purified keratinase was examined with its potential for dehairing the skin.  相似文献   

7.
Summary Isolation and identification of a thermotolerant feather-degrading bacterial strain from Thai soil as well as purification and properties of its keratinase were investigated. The thermotolerant bacterium was identified as Bacillus licheniformis. The keratinase was purified to homogeneity by three-step chromatography. The purified enzyme exhibited a high specific activity (218 U mg−1) with 86-fold purification and 25% yield. The enzyme was monomeric and had a molecular mass of 35 kDa. The optimum pH and temperature for the enzyme were 8.5 and 60 °C, respectively. The enzyme activity was significantly inhibited by PMSF and partly inhibited by EDTA and iodoacetamide, but was stimulated by metal ions. It hydrolysed soluble proteins with a relative activity of 4–100% and insoluble proteins, including keratins, with a relative activity of 3–35%. Therefore, the enzyme could improve the nutritional value of meat- and poultry-processing wastes containing keratins, collagen and gelatin.  相似文献   

8.
A keratinase was isolated from the culture medium of feather-degrading Bacillus licheniformis PWD-1 by use of an assay of the hydrolysis of azokeratin. Membrane ultrafiltration and carboxymethyl cellulose ion-exchange and Sephadex G-75 gel chromatographies were used to purify the enzyme. The specific activity of the purified keratinase relative to that in the original medium was approximately 70-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Sephadex G-75 chromatography indicated that the purified keratinase is monomeric and has a molecular mass of 33 kDa. The optimum pH and the pI were determined to be 7.5 and 7.25, respectively. Under standard assay conditions, the apparent temperature optimum was 50°C. The enzyme is stable when stored at −20°C. The purified keratinase hydrolyzes a broad range of substrates and displays higher proteolytic activity than most proteases. In practical applications, keratinase is a useful enzyme for promoting the hydrolysis of feather keratin and improving the digestibility of feather meal.  相似文献   

9.
The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular alkaliphilic, thermostable and halotolerent xylanase. The culture conditions for xylanase production were optimized with respect to pH, temperature, NaCl and inexpensive agro waste as substrates. Xylanase yield was enhanced more than four fold in the presence of 1% corn husk and 0.5% peptone or feather hydrolysate at pH 11 and 37°C. Xylanase was purified to 11.8-fold with 8.7% yield by using traditional chromatographic methods whereas the same enzyme purified to 20-fold with 72% yield by using corn husk as ligand. Its molecular mass was estimated to be 24 kDa by SDS–PAGE. The xylanase had maximal activity at pH 11 and 70°C. The enzyme was active over broad range, 0–20% sodium chloride. The enzyme was thermostable retaining 100% of the original activity at 70°C for 3 h. The apparent K m values for oat spelt xylan and brichwood xylan were 4.1 and 4.4 mg/ml respectively. The deduced internal amino acid sequence of PPKS-2 xylanase resembled the sequence of β-1,4-endoxylanase, which is member of glycoside hydrolase family 11.  相似文献   

10.
Two trypsin-like enzymes (TLEs) were purified from North Pacific krill (Euphausia pacifica) by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography. The purified enzymes were identified as trypsins by LC-ESI-MS/MS analysis. The relative molecular mass of TLE I and TLE II were 33 and 32.3 kDa, respectively, with isoelectric points of 4.5 and 4.3, respectively. The TLEs showed excellent thermal stable in the crude extract and the purified TLEs were active over a wide pH (6.0–11.0) and temperature (10–70°C) range. Compared with trypsins from other organisms, the purified TLEs had physiological efficiencies of 1.6–6.7-fold. The difference in Arg, Ile and Asp content might explain why E. pacifica TLEs have good thermal stability and physiological efficiency.  相似文献   

11.
The halophilic bacterial strain Chromohalobacter sp. TVSP 101 was shown to produce extracellular, halotolerant, alkali-stable and moderately thermophilic α-amylase activity. The culture conditions for higher amylase production were optimized with respect to NaCl, pH, temperature and substrates. Maximum amylase production was achieved in a medium containing 20% NaCl or 15% KCl at pH 9.0 and 37 °C in the presence of 0.5% rice flour and tryptone. Addition of 50 mM CaCl2 to the medium increased amylase production by 29%. Two kinds of amylase activity, designated amylase I and amylase II, were purified from culture filtrates to homogeneity with molecular masses of 72 and 62 kDa, respectively. Both enzymes had maximal activity at pH 9.0 and 65 °C in the presence of 0–20% (w/v) NaCl but amylase I was much more stable in the absence of NaCl than amylase II. The enzymes efficiently hydrolyzed carbohydrates to yield maltotetraose, maltotriose, maltose, and glucose as the end products.  相似文献   

12.
Two 2,5-diketo-d-gluconate reductases, I and II, were purified respectively 918-fold and 28-fold from a mutant strain derived from Corynebacterium sp. SHS 0007. The enzymes appeared to be homogeneous on polyacrylamide gel electrophoresis. Both reductases converted 2,5-diketo-d-gluconate to 2-keto-l-gulonate in the presence of NADPH and seemed to be active only for reduction. The molecular weights of reductases I and II were estimated to be 29,000 and 34,000, respectively; and both were monomeric. Their isoelectric points were respectively pH 4.3 and pH 4.1. The optimum pH was 6.0 to 7.0 for reductase I, and 6.0 to 7.5 for reductase II. The Km values (pH 7.0, 30°C) of reductase I for 2,5-diketo-d-gluconate and for NADPH were 1.8 mM and 12 μM, respectively; and the corresponding values of reductase II were 13.5 mM and 13 μM. Both reductases converted 5-keto-d-fructose to l-sorbose in the presence of NADPH.  相似文献   

13.
A novel thermophilic spore-forming anaerobic microorganism (strain Ab9) able to grow on citrus pectin and polygalacturonic acid (pectate) was isolated from a thermal spa in Italy. The newly isolated strain grows optimally at 70°C with a growth rate of 0.23 h−1 with pectin and 0.12 h−1 with pectate as substrates. Xylan, starch, and glycogen are also utilized as carbon sources and thermoactive xylanolytic (highest activity at 70°–75°C), amylolytic as well as pullulolytic enzymes (highest activity at 80°–85°C) are formed. Two thermoactive pectate lyases were isolated from the supernatant of a 300-l culture of isolate Ab9 after growth on citrus pectin. The two enzymes (lyases a and b) were purified to homogeneity by ammonium sulfate treatment, anion exchange chromatography, hydrophobic chromatography and finally by preparative gel electrophoresis. After sodium dodecylsulfate (SDS) gel electrophoresis, lyase a appeared as a single polypeptide with a molecular mass of 135 000 Da whereas lyase b consisted of two subunits with molecular masses of 93 000 Da and 158 000 Da. Both enzymes displayed similar catalytic properties with optimal activity at pH 9.0 and 80°C. The enzymes were very stable at 70°C and at 80°C with a half-life of more than 60 min. The maximal activity of the purified lyases was observed with orange pectate (100%) and pectate-sodium salt (90%), whereas pectin was attacked to a much lesser extent (50%). The K m values of both lyases for pectate and citrus pectin were 0.5 g·l−1 and 5.0 g·l−1, respectively. After incubation with polygalacturonic acid, mono-, di-, and tri-galacturonate were detected as final products. A 2.5-fold increase of activity was obtained when pectate lyases were incubated in the presence of 1 mM Ca2+. The addition of 1 mM ethylenediaminetetraacetic acid (EDTA) resulted in complete inhibition of the enzymes. These heat-stable enzymes represent the first pectate-lyases isolated and characterized from a thermophilic anaerobic bacterium. On the basis of the results of the 16S rRNA sequence comparisons and the observed phenotypic differences, we propose strain Ab9 as a new species of Thermoanaerobacter, namely Thermoanaerobacter italicus sp. nov. Received: May 25, 1997 / Accepted: June 5, 1997  相似文献   

14.
Degradation of chicken feathers by Chrysosporium georgiae   总被引:1,自引:0,他引:1  
Using a baiting technique, Chrysosporium georgiae was isolated from chicken feathers. Twenty-eight different fungal isolates were evaluated for their ability to produce keratinase enzymes using a keratin–salt agar medium containing either white chicken feathers or a prepared feather keratin suspension (KS). The Chrysosporium species were able to use keratin and grow at different rates. Chrysosporium georgiae completely degraded the added keratin after 9 days of incubation. Degradation of feathers by C. georgiae was affected by several cultural factors. Highest keratinolytic activity occurred after 3 weeks of incubation at 6 and 8~pH at 30 °C. Chrysosporium georgiae was able to degrade white chicken feathers, whereas bovine and human hair and sheep wool were not degraded and did not support fungal growth. Addition of 1% glucose to the medium containing keratin improved fungal growth and increased enzyme production. Higher keratin degradation resulted in high SH accumulation and the utilization of the carbohydrate carbon in the medium resulted in high keto-acid accumulation but decreased ammonia accumulation. Supplementation of the keratin–salt medium with minerals such as NH4Cl and MgSO4 slightly increased mycelial growth, but decreased production of extracelluar keratinase. Keratinase enzymes were very poorly produced in the absence of keratin, indicating its inducible nature. Analysis of endocellular keratinases in the mycelial homogenate indicated higher activity of intracellular keratinase as compared to the extracellular enzyme in culture filtrates. Chrysosporium georgiae was the most superior for keratinase production among the Chrysosporium species tested in the presence or absence of glucose. It produced more of the intracellular enzymes than the exocellular ones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A feather-degrading strain of Pseudomonas aeruginosa KS-1 was used in the present study. Its crude cell-free fermentation broth completely degraded chicken feather within 12 h, in the absence of disulphide reductase activity. Keratinase from its extracellular broth was purified and characterized, assuming that it would be a potential β-keratin-degrading enzyme with prospective applications in degradation of β-plaques of prions. The keratinase was purified by using Q-Sepharose anion exchange chromatography and its molecular weight, as determined by SDS–PAGE analysis, was 45 kDa. It was an alkaline, serine protease with pH and temperature optima of 9 and 60°C, respectively. The enzyme was highly thermostable with a t 1/2 > 2 h at 80°C and had a very high K to C (keratinolytic to caseinolytic) ratio of 2.5. Besides feather keratin, it also hydrolyzed a variety of other complex substrates including fibrin, gelatin and meat protein. Its activity on synthetic substrates revealed that it efficiently cleaves them in the order phenylalanine > lysine > alanine > leucine p-nitroanilides. It also cleaved insulin B chain between Val12-Glu13, Ala14-Leu15, Gly20-Glu21 and Arg22-Gly23 residues.  相似文献   

16.
Isolation of two keratinolytic bacterial strains from poultry soil as well as purification and properties of keratinase were investigated. Isolates were designated as KI8101 and KI8102 (KI, keratin isolates) and were identified as Bacillus subtilis and B. licheniformis respectively. The purified enzyme from KI8102 exhibited a high specific activity of 500 U/mg with 71‐fold purification and 41% yield. SDS‐PAGE analysis indicated that the purified keratinase had a molecular mass of 32 kDa. The optimum temperature and pH were 50°C and 7.5, respectively. Its Km was 83.3 μM and Vmax was 71.4 μmol/mL min. The bacterium could potentially degrade keratin waste such as human hair, nails, bovine hair and wool. Therefore, the enzyme could improve the nutritional value of meat and poultry‐processing waste containing keratin and could be a potential candidate for biotechnological processing involving keratin hydrolysis.  相似文献   

17.
Li X  Yu HY 《Folia microbiologica》2012,57(5):447-453
A halophilic isolate Thalassobacillus sp. LY18 producing extracellular amylase was isolated from the saline soil of Yuncheng Salt Lake, China. Production of the enzyme was synchronized with bacterial growth and reached a maximum level during the early stationary phase. The amylase was purified to homogeneity with a molecular mass of 31 kDa. Major products of soluble starch hydrolysis were maltose and maltotriose, indicating an α-amylase activity. Optimal enzyme activity was found to be at 70°C, pH 9.0, and 10 % NaCl. The α-amylase was highly stable over broad temperature (30–90°C), pH (6.0–12.0), and NaCl concentration (0–20 %) ranges, showing excellent thermostable, alkalistable, and halotolerant nature. The enzyme was stimulated by Ca2+, but greatly inhibited by EDTA, indicating it was a metalloenzyme. Complete inhibition by diethyl pyrocarbonate and β-mercaptoethanol revealed that histidine residue and disulfide bond were essential for enzyme catalysis. The surfactants tested had no significant effects on the amylase activity. Furthermore, it showed high activity and stability in the presence of water-insoluble organic solvents with log P ow ≥ 2.13.  相似文献   

18.
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.  相似文献   

19.
Substitution of the N-terminus of Streptomyces olivaceoviridis xylanase XYNB to generate mutant TB has been previously shown to increase the thermostability of the enzyme. To further improve the stability of this mutant, we introduced a disulfide bridge (C109–C153) into the TB mutant, generating TS. To assess the effect of the disulfide bridge in the wild-type enzyme, the S109C-N153C mutation was also introduced into XYNB, resulting in XS. The mutants were expressed in Pichia pastoris, the recombinant enzymes were purified, and the effect of temperature and pH on enzymatic activity was characterized. Introduction of the disulfide bridge (C109–C153) into XYNB (XS variant) and TB (TS variant) increased the thermostability up to 2.8-fold and 12.4-fold, respectively, relative to XYNB, after incubation at 70°C, pH 6.0, for 20 min. In addition, a synergistic effect of the disulfide bridge and the N-terminus replacement was observed, which extended the half-life of XYNB from 3 to 150 min. Moreover, XS and TS displayed better resistance to acidic conditions compared with the respective enzymes that did not contain a disulfide bridge.  相似文献   

20.
The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40°C for 72 h and 96 h, respectively. Addition of glucose or fructose (≥1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)2HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS–PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60°C and 4.0–4.5, respectively. Both invertases were stable for 1 h at 60°C with half-lives of 10 min at 70°C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters Km and Vmax for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号