首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen‐rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open‐top chambers. We measured the effect of 1.0–1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop‐over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen‐rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1–2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.  相似文献   

2.
Monthly surveys of Bewick's Swans Cygnus columbianus bewickii , Whooper Swans Cygnus cygnus and Mute Swans Cygnus olor in Britain and Ireland were made during the 1990–1991 winter to determine factors affecting the swans' selection of feeding sites. Geographic location and habitat both influenced site selection. Whooper Swans occurred in greatest numbers at sites in Scotland, northeastern England and Northern Ireland, whereas Bewick's Swans had a more southerly distribution, reflecting differences in the migratory routes used by these two species. The resident Mute Swans were more widespread, with large flocks occurring in southeastern England and in parts of Scotland. Whooper and Mute Swans were found mainly on permanent inland waters (68% and 61%, respectively), but the majority of Bewick's Swans (60%) were on arable land. The percentage of Bewick's Swan flocks found on permanent inland waters (42%) was higher than that found on arable fields (23%), indicating that the large number recorded on arable land was a result of the birds congregating at a comparatively small number of sites. Overall, less than 15% of Whooper Swans and 3% of Mute Swans were on arable crops during the winter, but the largest flocks were associated with arable land for all three species. Thus, although the occurrence of large flocks at particular arable sites may give an impression that swans feed mainly on farmland, the swans are in fact more widely dispersed. Regional variation in the percentage of juveniles present was recorded for all three species. Changes during the winter in the distribution of juveniles, and of the swans as a whole, are considered in relation to food supply and to migratory routes for the Bewick's and Whooper Swans.  相似文献   

3.
On the basis of ichthyoplankton surveys made in June 2004–2005 and 2007, June–July 2010, and July 2011 in these bays and beyond them (in open waters of the White Sea Basin and adjacent areas of the Gorlo) larvae of White Sea herring were absent. Principal aggregations of larvae are found in the Kandalaksha Bay in June 2004–2005 and 2007. In the Onega Bay and in the Dvina Bay surveyed in June 2007 abundance of larvae was ratter low and in June–July 2010 and July 2011 in these bays and beyond them (in open waters of the White Sea Basin and adjacent areas of the Gorlo) larvae of White Sea herring were absent. Within the Kandalasksha Bay, from year to year, there were two disconnected aggregations of larvae. The space between them was situated in the open part of the bay along the transect of the Chupa Estuary and the Umba Estuary. One of the aggregations of larvae occupied the tail of the bay, and the second aggregation occupied the ante-mouth and mouth areas of the Chupa Estuary. It is supposed that these aggregations result from spawning of two independent spawning groups of the White Sea herring spawning in isolated regions of the Kandalaksha Bay. Presence of the bulk of larvae of the White Sea herring within the limits of the Kandakaksha Bay and their almost complete absence at the boundary of the bay with the White Sea Basin and at the boundaries between the Onega Bay and the Dvina Bay and the Basin support the hypothesis on the absence of an exchange with larvae between stocks of the White Sea herring spawning in large bays of the White Sea. The larvae are retained within shallow waters of the Kandalaksha Bay by the system of two-layer water circulation in the areas of spawning of herring in bays and gulfs of the estuarine type. Their drift outside of the Onega Bay and the Dvina Bay may be delimited by frontal divides at their boundaries with the Basin.  相似文献   

4.
The early developmental stages of capelin Mallotus villosus and lesser sandeel Ammodytes marinus were the major representatives of the fish larvae in the ichthyoplankton of the open waters of the White Sea in June 2007 and 2010 and in July 2010 and 2011. The larvae of these two species were widely distributed in the White Sea and have been registered in the large bays and in the other parts of the sea. The larvae of capelin and lesser sandeel were the most abundant in Onega Bay and in Dvina Bay and in Gorlo Strait of the White Sea; the larvae of lesser sandeel have also been found in the coastal waters of Kandalaksha Bay. The schooling of the larvae of these two species were characterized by a relatively permanent localization that referred to the spawning grounds; the shape and the location of the schoolings usually depend on the presence and configuration of the areas of the pronounced gradients of the hydrophysical parameters in these areas.  相似文献   

5.
《Ibis》1997,139(3):598-598
BOWLER, J.M. 1996. Feeding Strategies of Bewick's Swans Cygnus columbianus brwickii in Winter. PhD Thesis. University of Bristol.  相似文献   

6.
The migration strategy of many capital breeders is to garner body stores along the flyway at distinct stopover sites. The rate at which they can fuel is likely to be strongly influenced by a range of factors, such as physiology, food availability, time available for foraging and perceived predation. We analysed the foraging behaviour and fuel accumulation of pink‐footed geese, an Arctic capital breeder, at their mid‐flyway spring stopover site and evaluated to what extent their behaviour and fuelling were related to physiological and external factors and how it differed from other stopovers along the flyway. We found that fuel accumulation rates of geese at the mid‐flyway site were limited by habitat availability rather than by digestive constraints. However, as the time available for foraging increased over the stopover season, geese were able to keep constant fuelling rate. Putting this in perspective, geese increased their daily net energy intake along the flyway corresponding to the increase in time available for foraging. The net energy intake per hour of foraging remained the same. Geese showed differences in their reaction to predators/disturbance between the sites, taking higher risks particularly at the final stopover site. Hence, perceived predation along the flyway may force birds to postpone the final fuel accumulation to the last stopover along the flyway. Flexibility in behaviour appears to be an important trait to ensure fitness in this capital breeder. Our findings are based on a new, improved method for estimating fuel accumulation of animals foraging in heterogeneous landscapes based on data obtained from satellite telemetry and habitat specific intake rates.  相似文献   

7.
Horseshoe crab (Limulus polyphemus) eggs are a dietary staple of the red knot (Calidris canutus) during its spring stopover on the Delaware Bay. Numbers of knots stopping in Delaware Bay declined in the 1990s concurrent with a decline in horseshoe crabs, leading to the hypothesis that reduced horseshoe crab egg abundance limited the red knot population. Management efforts, including a seasonal harvest moratorium in the Delaware Bay, have been instituted to restore crab populations to levels of sustainable use by multiple users, including migratory birds. Our objective was to evaluate the sufficiency of horseshoe crab eggs in Delaware Bay in May–June 2004 and 2005 for knots to refuel for their migratory flight to the Arctic breeding grounds. We examined egg counts to determine if there were fewer high egg-density sites later than earlier in the day and season, as migrating birds might deplete this resource. We studied foraging rates at red knot locations to determine if foraging probes increased with time of day and season as birds depleted surface eggs by pecking, then began probing for subsurface eggs. Finally, we experimentally tested whether red knots and their competitors depleted horseshoe crab eggs. Crab egg numbers at knot foraging sites did not decline throughout the day or season in 2004. In both years, we found no evidence that knots switched from pecking to probing with increases in time since sunrise or start of the stopover. Egg numbers were similar in exclosed and accessible plots on crab nesting depressions and in areas of open intertidal zone, but were significantly lower in accessible than in exclosed plots in the wrack line. Our results indicate that horseshoe crab eggs in Delaware Bay were sufficient to support the refueling of the present-day stopover population of red knots. If an increase in the availability of crab eggs to foraging birds does not result in an increase in knot numbers, managers must prioritize mitigation of limiting factors at other historically important spring stopovers and on the poorly understood breeding and wintering grounds in addition to the Delaware Bay. © 2011 The Wildlife Society.  相似文献   

8.
Identifying an organism's migratory strategies and routes has important implications for conservation. For most species of European ducks, information on the general course of migration, revealed by ringing recoveries, is available, whereas tracking data on migratory movements are limited to the largest species. In the present paper, we report the results of a tracking study on 29 Eurasian Teals, the smallest European duck, captured during the wintering period at three Italian sites. The departure date of spring migration was determined for 21 individuals, and for 15 the entire spring migratory route was reconstructed. Most ducks departed from wintering grounds between mid‐February and March following straight and direct routes along the Black Sea‐Mediterranean flyway. The breeding sites, usually reached by May, were spread from central to north‐Eastern Europe to east of the Urals. The migratory speed was slow (approximately 36 km/day on average) because most birds stopped for several weeks at stopover sites, mainly in south‐eastern Europe, especially at the very beginning of migration. The active flight migration segments were covered at much higher speeds, up to 872 km/day. Stopover duration tended to be shorter when birds were closer to their breeding site. These results, based on the largest satellite tracking effort for this species, revealed for the first time the main features of the migratory strategies of individual Teals wintering in Europe, such as the migration timing and speed and stopover localization and duration.  相似文献   

9.
Also Received     
《Ibis》1997,139(2):428-430
Biber, 0., ENGIST. P., MARTI, C. & SALATHE. T. 1995. Conservation ol the White Stork, Western Population. Proceedings of the International Symposium on the White Stork (Western Population), Basel 1994.
Cucco. M. Levi, L., MAFFEI. G. & PULCHER. C. (eds). 1996. Atlante degli ucceli di Piemonte e Valle d'Aosta in inverno (1986–1992).
GHIGI, A. 1995. Alessandro Ghigi: Autobiografia.
GILLHAM. E. & GILLHAM. B. 1996. Hybrid Ducks: A contribution towards an inventory.
HAYWOOD. G.D. & VKRNER. J. 1994. Flammulated, Boreal and Great Gray Owls in the United States: A technical conservation assessment.
HICKLIN. P. (ed). 1996. Shorebird Ecology and Conservation in the Western Hemisphere: Based on papers presented at a symposium held on 4–5 November 1991 in conjunction with the IV Neotropical Ornithology Congress in Quito. Ecuador.
Porter R.E. & MARTINS, R.P. (eds). 1996. Southern Yemen and Scotra: The report of the OSME survey in spring 1993.
PRANTY. B. 1996. A Birder's Guide to Florida. 4th edition.
Scott, D. A. 1995. A Directory of Wetlands in the Middle East.
TAYLOR, D. 1996. Birding in Kent.
WAGNER. W.L. & FUNK. VA. (eds). 1995. Hawaiian Biogeography: Evolution on a hot spot archipelago.
WAUER. R.H. 1996. A Birder's West Indies: An island by island tour.
ZALAKEVICIUS. M., SVAZAS, S., Stanvicious V. & VAIKUS. G. 1995. zBird Migration and Wintering in Lithuania.
ZORICH. D. & HOAGLANU. K.E. 1995. Status, Resources and Needs of Systematic Collections.  相似文献   

10.
Understanding the departure decisions of migratory birds is critical for determining how changing climatic conditions will influence subsequent arrival times on the breeding grounds. A long‐term dataset (1972–2008) of Whooper Swan Cygnus cygnus departure dates from a wintering site in Ireland was used to assess the factors determining the timing of migration. Early and late migrating swans showed different departure patterns. Earlier wintering ground departure was more pronounced for the first 50% of the population than the last 10% of departing individuals. Earlier departure was associated with an increase in February temperatures at the wintering site for all departure phases except the date when the last individual departed. The date by which the first 50% of Swans had departed was earlier with increasing numbers of wintering Swans, suggesting that competition on the wintering grounds may further influence the timing of departure. The results also suggested that departure is mediated by the influence of spring temperature on food resources, with increased February grass growth in warmer years enabling earlier departure of migrating Swans. To determine why arrival dates in the breeding ground have altered, environmental conditions in the wintering grounds must be taken into account.  相似文献   

11.
Understanding stopover decisions of long-distance migratory birds is crucial for conservation and management of these species along their migratory flyway. Recently, an increasing number of Barnacle geese breeding in the Russian Arctic have delayed their departure from their wintering site in the Netherlands by approximately one month and have reduced their staging duration at stopover sites in the Baltic accordingly. Consequently, this extended stay increases agricultural damage in the Netherlands. Using a dynamic state variable approach we explored three hypotheses about the underlying causes of these changes in migratory behavior, possibly related to changes in (i) onset of spring, (ii) potential intake rates and (iii) predation danger at wintering and stopover sites. Our simulations showed that the observed advance in onset of spring contradicts the observed delay of departure, whereas both increased predation danger and decreased intake rates in the Baltic can explain the delay. Decreased intake rates are expected as a result of increased competition for food in the growing Barnacle goose population. However, the effect of predation danger in the model was particularly strong, and we hypothesize that Barnacle geese avoid Baltic stopover sites as a response to the rapidly increasing number of avian predators in the area. Therefore, danger should be considered as an important factor influencing Barnacle goose migratory behavior, and receive more attention in empirical studies.  相似文献   

12.
The genetic diversity among spawning groups of herring from different parts of the White Sea was assessed using ten microsatellite loci. All loci were polymorphic with the expected heterozygosity estimates varying in the range of 12.7–94.1% (mean was 59.5%). The degree of genetic differentiation displayed by White Sea herring was statistically significant (θ = 2.03%). The level of pairwise genetic differentiation F ST was 0–0.085, and it was statistically significant in most of the comparison pairs between the herring samples. A hierarchical analysis of molecular variance (AMOVA) revealed the statistically significant differentiation of White Sea herring. 96.59% genetic variation was found within the samples and 3.41% variation was found among the populations. The main component of interpopulation diversity (1.85%) falls at the differences between two ecological forms of herring, spring- and summer-spawning. Within the spring-spawning form, the presence of local stocks in Kandalaksha Bay, Onega Bay, and Dvina Bay was demonstrated.  相似文献   

13.
A population decline of the western Atlantic red knot (Calidris canutus rufa) has been linked to food limitation during the spring migratory stopover in Delaware Bay, USA. The stopover ecology at potential alternative sites has received little attention. We studied factors affecting red knot habitat selection and flock size at a coastal stopover site in Virginia in 2006–2007. The most common potential prey items were coquina clams (Donax variabilis) and crustaceans. Red knot foraging sites had more clams and crustaceans than unused sites in 2006. Prey abundance increased during the 2007 stopover period and remained high after the red knot peak. Red knot flock size in 2007 increased with mean clam shell length, and probability of flock presence decreased with increasing distance from night use locations. Our results suggest that red knots preferred coquina clams and that these clams were not depleted during the stopover period in 2007. Thus prey abundance did not appear to be a population-limiting factor at this coastal stopover site in Virginia in that year. Protection of coastal sites outside of Delaware Bay, many of which have been altered by human development, would likely benefit red knot population recovery, as they can apparently provide abundant food resources during at least some years.  相似文献   

14.
保安湖麦穗鱼种群生物学Ⅳ.种群动态   总被引:13,自引:4,他引:9  
1995年10月至1996年11月运用标志回捕法对保安湖1#试验围拦中麦穗鱼的种群数量作了11次估算,并对种群的动态特征进行了分析。 周年的种群数量变动于0.40-2.45ind·m-2,在5月份最高。不同世代的强度存在较大的差异,1996年世代最强,1996年11月为21,631ind,与同期的1995世代(14,431ind)相比增加了49.9%,死亡率在夏季较高。1995世代周年死亡率为71.7%,1996年11月的数量为4,084ind,与生活史中同期的1994世代(1,515ind)相比,增加了1.7倍。1994世代在1996年繁殖后期的死亡率急剧增加,在产卵季节过后全部死亡。种群活动水平除了与水温有关外,在春季可能主要受繁殖活动的影响。1996年的种群繁殖力为4.05×106粒,其中0+龄的贡献为85.7%.    相似文献   

15.
Plaice Pleuronectes platessa populations on the west coast of England and Wales are currently managed as two stocks: in ICES Division VIIa (Irish Sea, Cardigan Bay and St George's Channel), and ICES Divisions VIIf&g (Bristol Channel and Celtic Sea). A total of 13,784 plaice were fitted with Petersen tags and released in these areas during 1979–1980 and 1993–1996. Analysis of the 2788 recaptures received by June 2000 confirmed known spawning and feeding grounds in the region. It showed also that plaice >25 cm L T tended to undertake extensive spatial movements. At this size, female plaice were likely to be mature or maturing for the first time, whilst males were probably mature. Tag recaptures indicated resident sub-stocks of plaice in the north-east Irish Sea, the south-east Irish Sea, Cardigan Bay and Bristol Channel, a contingent of plaice in all areas that undertook permanent dispersal to other areas, and a contingent which originated in the south-east Irish Sea and migrated to spawn in the Bristol Channel. Plaice originating in the Bristol Channel rarely moved north into ICES Vila. A general hypothesis of plaice population structure in the region is presented and discussed in relation to stock assessment.  相似文献   

16.
ABSTRACT Many shorebirds exhibit within‐ and among‐year site fidelity during their annual cycle. Little is known, however, about the migration ecology of Red Knots (Calidris canutus) that migrate along the Pacific Flyway and occur in Washington in numbers that exceed counts elsewhere on the flyway. At two large estuaries in coastal Washington, Grays Harbor and Willapa Bay, we searched for and recorded the locations of Red Knots (N= 547) that had been individually marked with leg flags at their wintering grounds in Baja California Sur, Mexico, during the period from October 2006 to April 2009. In 2010, we resighted 43 Red Knots at Grays Harbor and Willapa Bay that had been observed at these sites in previous years, primarily in 2009. We found a high degree of site fidelity between years, with birds observed in 2010 more likely to return to the same stopover site used in 2009 than to switch stopover sites. For knots that did not switch estuaries between years, the median nearest distance between locations where individuals were observed between years was 1.4 km at Grays Harbor and 0.6 km at Willapa Bay. Our results provide the first evidence of stopover site fidelity by Red Knots of the roselaari subspecies. Fidelity occurred at three spatial scales: coastal Washington, the two estuaries where we conducted our study, and specific mudflat areas within the estuaries. Because our study sites support high populations of bivalves, Red Knots may be returning to the same areas in subsequent years to exploit what we suspect is a predictable food resource. The abundance of Red Knots and high degree of site fidelity suggest that our study sites in Grays Harbor and Willapa Bay are important for the conservation of this species on the Pacific Flyway.  相似文献   

17.
Birds can optimize their migration either by minimizing time of transport, energy expenditure, or predation risk during migration. For each of these optimization criteria different fattening and stopover strategies are predicted. The first two of these optimization criteria are examined here for the bar-tailed godwit ( Limosa lapponica ). In the European Wadden Sea two populations of bar-tailed godwits stop over during spring migration between their wintering and breeding areas. The European population winters mainly in Great Britain and the western part of the Wadden Sea and breeds in Fennoscandia. The Afro-Siberian population winters in West Africa and breeds in Siberia. The European wintering population migrates to the eastern parts of Wadden Sea in March where it stays until early May. During this time birds gain 1.9 g d−1 in body mass for a 1500–2000-km non-stop flight to the breeding areas. Afro-Siberian birds stay only for one month in May in the Wadden Sea where they gain on average 9.4 g d−1 in mass for a 4000-km non-stop flight. Intake rates in April/May did not differ between the two populations (1.5 kJ min−1 and 1.8 kJ min−1 for Siberian and European migrants, respectively) but total energy intake was higher for the Siberian migrants, since they spend 50% of the day foraging vs 30% in the European birds. In contrast to European migrants, Afro-Siberian birds start to moult into breeding plumage already in their winter quarters. During their stopover in the Wadden Sea thermostatic costs are lower than at times when European birds are present. Thus, the higher energy demands of the Afro-Siberian birds seem to be fulfilled by a combination of physiological adaptations and a high working level. European birds seem to adopt an energy-minimized migration strategy whereas Afro-Siberian birds appear to follow a time-minimized migration.  相似文献   

18.
We studied the long‐distance migration of Lesser Black‐backed Gulls Larus fuscus fuscus breeding in northern Norway along their eastern flyway using geolocators in 2009 and 2010. The majority of birds wintered in lakes in East Africa and the southeast Mediterranean was the most important stopover area. Larus f. fuscus along the eastern flyway travelled at a net travel speed of 399 and 177 km/day during the autumn and spring migration, respectively, higher than published travel speeds for Dutch Larus fuscus migrating along the western flyway. The results suggest that the long‐distance migratory Norwegian L. f. fuscus seek to minimize time spent in transit, whereas lower travel speed during northerly spring migration may reflect differences in wind patterns or food conditions between spring and autumn.  相似文献   

19.
Brent geese (called brant in North America) are among the smallest and the most marine of all goose species, and they have very long migration routes between high Arctic breeding grounds and temperate wintering grounds. Like all other geese, brent geese are almost entirely herbivorous. Because of these ecological characteristics they have a high food demand and are strongly dependent on stopover sites to ”refuel” during the migration period. Three subspecies of brent geese are distributed around the Holarctic, forming seven populations with distinct migration routes. Most or all of these populations make heavy use of Zostera spp. during migratory stopovers on spring and/or autumn migration. Examples of Zostera stopover areas being used by large numbers of brent geese for several weeks each year are Izembek Lagoon (Alaska), lagoons in Baja California, the German/Danish Wadden Sea, the Golfe du Morbihan (France), British estuaries, and the White Sea (Western Russian Arctic). Brent geese feed on Zostera wherever they can, but they can only reach the plants at low tide or in shallow water. Changes in Zostera abundance affect brent goose distribution, and the ”wasting disease” affecting Atlantic Zostera stocks during the 1930s was at least partly responsible for a steep decline in brent goose population sizes on both sides of the Atlantic. While Zostera is of outstanding importance as food for brent geese, the impact of the geese on Zostera stocks seems to be less important – at many sites, the geese consume only a small amount of the available Zostera, or, if they consume more, the seagrass can regenerate fully until the following season. Received: 6 December 1998 / Received in revised form: 6 August 1999 / Accepted: 9 August 1999  相似文献   

20.
The activity of the enzymes of the energy and carbohydrate metabolisms (cytochrome-c oxidase, L-lactate dehydrogenase, aldolase, and glycerol-1-phosphate dehydrogenase) have been studied in White Sea herring (the 1+, 2+, and 3+ age groups) sampled in Onega Bay, Dvina Bay, and Kandalaksha Bay of the White Sea. The bays differ in the hydrological regime, ecological and feeding conditions. The individual variability of the enzyme activity was the largest in the herring of the age 1+. The flexibility of the intensity and vector of the basic metabolic reactions probably supports the energy homeostasis, preconditions the switching to the most effective way of using the resources, and regulates the synthesis of the structural and storage molecules, as well as vectors the adaptation strategy of herring specimens of each age group to the hydrological regime, environment, and feeding conditions of the particular bay, corresponding to their age-related characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号