首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutations in superoxide dismutase 1 (SOD1) cause familial forms of amyotrophic lateral sclerosis (fALS). Disease causing mutations have diverse consequences on the activity and half-life of the protein, ranging from complete inactivity and short half-life to full activity and long-half-life. Uniformly, disease causing mutations induce the protein to misfold and aggregate and such aggregation tendencies are readily visualized by over-expression of the proteins in cultured cells. In the present study we have investigated the potential of using immunoblotting of proteins separated by Blue-Native gel electrophoresis (BNGE) as a means to identify soluble multimeric forms of mutant protein. We find that over-expressed wild-type human SOD1 (hSOD1) is generally not prone to form soluble high molecular weight entities that can be separated by BNGE. For ALS mutant SOD1, we observe that for all mutants examined (A4V, G37R, G85R, G93A, and L126Z), immunoblots of BN-gels separating protein solubilized by digitonin demonstrated varied amounts of high molecular weight immunoreactive entities. These entities lacked reactivity to ubiquitin and were partially dissociated by reducing agents. With the exception of the G93A mutant, these entities were not reactive to the C4F6 conformational antibody. Collectively, these data demonstrate that BNGE can be used to assess the formation of soluble multimeric assemblies of mutant SOD1.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease in adults, is characterized by the selective degeneration and death of motor neurons leading to progressive paralysis and eventually death. Approximately 20% of familial ALS cases are associated with mutations in SOD1, the gene encoding Cu/Zn-superoxide dismutase (CuZnSOD). Previously, we reported that overexpression of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD or SOD2) attenuates cytotoxicity induced by expression of the G37R-SOD1 mutant in a human neuroblastoma cell culture model of ALS. In the present study, we extended these earlier findings using several different SOD1 mutants (G93C, G85R, and I113T). Additionally, we tested the hypothesis that mutant SOD1 increases mitochondrial-produced superoxide (O(2) (*)) levels and that SOD2 overexpression protects neurons from mutant SOD1-induced toxicity by reducing O(2) (*) levels in mitochondria. In the present study, we demonstrate that SOD2 overexpression markedly attenuates the neuronal toxicity induced by adenovirus-mediated expression of all four SOD1 mutants (G37R, G93C, G85R, or I113T) tested. Utilizing the mitochondrial-targeted O(2) (*)-sensitive fluorogenic probe MitoSOX Red, we observed a significant increase in mitochondrial O(2) (*) levels in neural cells expressing mutant SOD1. These elevated O(2) (*) levels in mitochondria were significantly diminished by the overexpression of SOD2. These data suggest that mitochondrial-produced O(2) (*) radicals play a critical role in mutant SOD1-mediated neuronal toxicity and implicate mitochondrial-produced free radicals as potential therapeutic targets in ALS.  相似文献   

4.

Background

By mechanisms yet to be discerned, the co-expression of high levels of wild-type human superoxide dismutase 1 (hSOD1) with variants of hSOD1 encoding mutations linked familial amyotrophic lateral sclerosis (fALS) hastens the onset of motor neuron degeneration in transgenic mice. Although it is known that spinal cords of paralyzed mice accumulate detergent insoluble forms of WT hSOD1 along with mutant hSOD1, it has been difficult to determine whether there is co-deposition of the proteins in inclusion structures.

Methodology/Principal Findings

In the present study, we use cell culture models of mutant SOD1 aggregation, focusing on the A4V, G37R, and G85R variants, to examine interactions between WT-hSOD1 and misfolded mutant SOD1. In these studies, we fuse WT and mutant proteins to either yellow or red fluorescent protein so that the two proteins can be distinguished within inclusions structures.

Conclusions/Significance

Although the interpretation of the data is not entirely straightforward because we have strong evidence that the nature of the fused fluorophores affects the organization of the inclusions that form, our data are most consistent with the idea that normal dimeric WT-hSOD1 does not readily interact with misfolded forms of mutant hSOD1. We also demonstrate the monomerization of WT-hSOD1 by experimental mutation does induce the protein to aggregate, although such monomerization may enable interactions with misfolded mutant SOD1. Our data suggest that WT-hSOD1 is not prone to become intimately associated with misfolded mutant hSOD1 within intracellular inclusions that can be generated in cultured cells.  相似文献   

5.
Aggregate formation in Cu,Zn superoxide dismutase-related proteins   总被引:2,自引:0,他引:2  
Aggregation of Cu,Zn superoxide dismutase (SOD1) protein is a pathologic hallmark of familial amyotrophic lateral sclerosis linked to mutations in the SOD1 gene, although the structural motifs within mutant SOD1 that are responsible for its aggregation are unknown. Copper chaperone for SOD1 (CCS) and extracellular Cu,Zn superoxide dismutase (SOD3) have some sequence identity with SOD1, particularly in the regions of metal binding, but play no significant role in mutant SOD1-induced disease. We hypothesized that it would be possible to form CCS- or SOD3-positive aggregates by making these molecules resemble mutant SOD1 via the introduction of point mutations in codons homologous to a disease causing G85R SOD1 mutation. Using an in vitro assay system, we found that expression of wild type human CCS or a modified intracellular wild type SOD3 does not result in significant aggregate formation. In contrast, expression of G168R CCS or G146R SOD3 produced aggregates as evidenced by the presence of high molecular weight protein complexes on Western gels or inclusion bodies on immunofluorescence. CCS- and SOD3-positive inclusions appear to be ubiquitinated and localized to aggresomes. These results suggest that proteins sharing structural similarities to mutant SOD1 are also at risk for aggregate formation.  相似文献   

6.
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.  相似文献   

7.
Mutations in Cu,Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (ALS). It has been proposed that neuronal cell death might occur due to inappropriately increased Cu interaction with mutant SOD1. Using Cu immobilized metal-affinity chromatography (IMAC), we showed that mutant SOD1 (A4V, G85R, and G93A) expressed in transfected COS7 cells, transgenic mouse spinal cord tissue, and transformed yeast possessed higher affinity for Cu than wild-type SOD1. Serine substitution for cysteine at the Cys111 residue in mutant SOD1 abolished the Cu interaction on IMAC. C111S substitution reversed the accelerated degradation of mutant SOD1 in transfected cells, suggesting that the Cys111 residue is critical for the stability of mutant SOD1. Aberrant Cu binding at the Cys111 residue may be a significant factor in altering mutant SOD1 behavior and may explain the benefit of controlling Cu access to mutant SOD1 in models of familial ALS.  相似文献   

8.
Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation.  相似文献   

9.
An important consequence of protein misfolding related to neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the formation of proteinaceous inclusions or aggregates within the central nervous system. We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interact and co-localize with the dynein-dynactin complex in cultured cells and affected tissues of ALS mice. In this study, we report that the interaction between mutant SOD1 and the dynein motor plays a critical role in the formation of large inclusions containing mutant SOD1. Disruption of the motor by overexpression of the p50 subunit of dynactin in neuronal and non-neuronal cell cultures abolished the association between aggregation-prone SOD1 mutants and the dynein-dynactin complex. The p50 overexpression also prevented mutant SOD1 inclusion formation and improved the survival of cells expressing A4V SOD1. Furthermore, we observed that two ALS-linked SOD1 mutants, H46R and H48Q, which showed a lower propensity to interact with the dynein motor, also produced less aggregation and fewer large inclusions. Overall, these data suggest that formation of large inclusions depends upon association of the abnormal SOD1s with the dynein motor. Whether the misfolded SOD1s directly perturb axonal transport or impair other functional properties of the dynein motor, this interaction could propagate a toxic effect that ultimately causes motor neuron death in ALS.  相似文献   

10.
11.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.  相似文献   

12.
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper–zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein–dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.  相似文献   

13.
Mutations in SOD1 cause FALS by a gain of function likely related to protein misfolding and aggregation. SOD1 mutations encompass virtually every domain of the molecule, making it difficult to identify motifs important in SOD1 aggregation. Zinc binding to SOD1 is important for structural integrity, and is hypothesized to play a role in mutant SOD1 aggregation. To address this question, we mutated the unique zinc binding sites of SOD1 and examined whether these changes would influence SOD1 aggregation. We generated single and multiple mutations in SOD1 zinc binding residues (H71, H80 and D83) either alone or in combination with an aggregate forming mutation (A4V) known to cause disease. These SOD1 mutants were assayed for their ability to form aggregates.Using an in vitro cellular SOD1 aggregation assay, we show that combining A4V with mutations in non-zinc binding domains (G37R or G85R) increases SOD1 aggregation potential. Mutations at two zinc binding residues (H71G and D83G) also increase SOD1 aggregation potential. However, an H80G mutation at the third zinc binding residue decreases SOD1 aggregation potential even in the context of other aggregate forming SOD1 mutations. These results demonstrate that various mutations have different effects on SOD1 aggregation potential and that the H80G mutation appears to uniquely act as a dominant inhibitor of SOD1 aggregation.  相似文献   

14.
15.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the selective loss of motor neurons in the brain, brain stem, and spinal cord. A number of the mutants of the human gene for superoxide dismutase 1 (SOD1) have been shown to cause familial ALS as a result of gain-of-function toxicity by an unknown mechanism. In this study, we show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a critical mediator of the apoptotic cell death signaling cascade induced by the ALS-associated G93A mutant of human SOD1 [SOD1(G93A)]. We observed that SOD1(G93A) induces S-nitrosylation of GAPDH and the subsequent binding of GAPDH and Siah1 in NSC34 motor neuron-like cells. Furthermore, SOD1(G93A) promoted nuclear translocation of S-nitrosylated GAPDH in the cells. In addition, SOD1(G93A)-induced apoptotic cell death was inhibited by deprenyl, a chemical inhibitor of GAPDH S-nitrosylation, in NSC34 cells. Taken together, our findings suggest that S-nitrosylation of GAPDH plays a critical role in SOD1(G93A)-induced neuronal apoptosis.  相似文献   

16.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. Substantial evidence implicates oxidative stress and mitochondrial dysfunction as early events in disease progression. Our aim was to ascertain whether mutation of the SOD1 protein increases metabolic functional susceptibility to oxidative stress. Here we used a motor neuron-like cell line (NSC34) stably transfected with various human mutant SOD1 transgenes (G93A, G37R, H48Q) to investigate the impact of oxidative stress on cell viability and metabolic function within intact cells. NSC34 cells expressing mutant SOD1 showed a dose dependent reduction in cell viability when exposed to oxidative stress induced by hydrogen peroxide, with variation between mutations. The G93A transfectants showed greater cell death and LDH release compared to cells transfected with the other SOD1 mutations, and H48Q showed an accelerated decline at later time points. Differences in mitochondrial bioenergetics, including mitochondrial respiration, coupling efficiency and proton leak, were identified between the mutations, consistent with the differences observed in viability. NSC34 cells expressing G93A SOD1 displayed reduced coupled respiration and mitochondrial membrane potential compared to controls. Furthermore, the G93A mutation had significantly increased metabolic susceptibility to oxidative stress, with hydrogen peroxide increasing ROS production, reducing both cellular oxygen consumption and glycolytic flux in the cell. This study highlights bioenergetic defects within a cellular model of ALS and suggests that oxidative stress is not only detrimental to oxygen consumption but also glycolytic flux, which could lead to an energy deficit in the cell.  相似文献   

17.
A dominant mutation in the gene for copper-zinc superoxide dismutase (SOD1) is the most frequent cause of the inherited form of amyotrophic lateral sclerosis. Mutant SOD1 provokes progressive degeneration of motor neurons by an unidentified acquired toxicity. Exploiting both affinity purification and mass spectrometry, we identified a novel interaction between heat-shock protein 105 (Hsp105) and mutant SOD1. We detected this interaction both in spinal cord extracts of mutant SOD1(G93A) transgenic mice and in cultured neuroblastoma cells. Expression of Hsp105, which is found in mouse motor neurons, was depressed in the spinal cords of SOD1(G93A) mice as disease progressed, while levels of expression of two other heat-shock proteins, Hsp70 and Hsp27, were elevated. Moreover, Hsp105 suppressed the formation of mutant SOD1-containing aggregates in cultured cells. These results suggest that techniques that raise levels of Hsp105 might be promising tools for alleviation of the mutant SOD1 toxicity.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a progressive neurode-generative disease characterized by motor neuron death. A hallmark of the disease is the appearance of protein aggregates in the affected motor neurons. We have found that p62, a protein implicated in protein aggregate formation, accumulated progressively in the G93A mouse spinal cord. The accumulation of p62 was in parallel to the increase of polyubiquitinated proteins and mutant SOD1 aggregates. Immunostaining studies showed that p62, ubiquitin, and mutant SOD1 co-localized in the protein aggregates in affected cells in G93A mouse spinal cord. The p62 protein selectively interacted with familial ALS mutants, but not WT SOD1. When p62 was co-expressed with SOD1 in NSC34 cells, it greatly enhanced the formation of aggregates of the ALS-linked SOD1 mutants, but not wild-type SOD1. Cell viability was measured in the presence and absence of overexpressed p62, and the results suggest that the large aggregates facilitated by p62 were not directly toxic to cells under the conditions in this study. Deletion of the ubiquitin-association (UBA) domain of p62 significantly decreased the p62-facilitated aggregate formation, but did not completely inhibit it. Further protein interaction experiments also showed that the truncated p62 with the UBA domain deletion remained capable of interacting with mutant SOD1. The findings of this study show that p62 plays a critical role in forming protein aggregates in familial ALS, likely by linking misfolded mutant SOD1 molecules and other cellular proteins together.  相似文献   

19.
ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号