首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To examine the behavior of microtubule-associated proteins (MAPs) in living cells, MAP 4 and MAP 2 have been derivatized with 6-iodoacetamido-fluorescein, and the distribution of microinjected MAP has been analyzed using a low light level video system and fluorescence redistribution after photobleaching. Within 1 min following microinjection of fluoresceinated MAP 4 or MAP 2, fluorescent microtubule arrays were visible in interphase or mitotic PtK1 cells. After cold treatment of fluorescent MAP 2-containing cells (3 h, 4 degrees C), microtubule fluorescence disappeared, and the only fluorescence above background was located at the centrosomes; microtubule patterns returned upon warming. Loss of microtubule immunofluorescence after nocodozole treatment was similar in MAP-injected and control cells, suggesting that injected fluorescein-labeled MAP 2 did not stabilize microtubules. The dynamics of the MAPs were examined further by FRAP. FRAP analysis of interphase cells demonstrated that MAP 2 redistributed with half-times slightly longer (60 +/- 25 s) than those for MAP 4 (44 +/- 20 s), but both types of MAPs bound to microtubules in vivo exchanged with soluble MAPs at rates exceeding the rate of tubulin turnover. These data imply that microtubules in interphase cells are assembled with constantly exchanging populations of MAP. Metaphase cells at 37 degrees C or 26 degrees C showed similar mean redistribution half-times for both MAP 2 and MAP 4; these were 3-4 fold faster than the interphase rates (MAP 2, t1/2 = 14 +/- 6 s; MAP 4, t1/2 = 17 +/- 5 s). The extent of recovery of spindle fluorescence in MAP-injected cells was to 84-94% at either 26 or 37 degrees C. Although most metaphase tubulin, like the MAPs, turns over rapidly and completely under physiologic conditions, published work shows either reduced rates or extents of turnover at 26 degrees C, suggesting that the fast mitotic MAP exchange is not simply because of fast tubulin turnover. Exchange of MAP 4 bound to telophase midbodies occurred with dynamics comparable to those seen in metaphase spindles (t1/2 = approximately 27 s) whereas midbody tubulin exchange was slow (greater than 300 s). These data demonstrate that the rate of MAP exchange on microtubules is a function of time in the cell cycle.  相似文献   

2.
Microtubules dramatically change their dynamics and organization at the entry into mitosis. Although this change is mediated by microtubule-associated proteins (MAPs), how MAPs themselves are regulated is not well understood. Here we used an integrated multi-level approach to establish the framework and biological significance of MAP regulation critical for the interphase/mitosis transition. Firstly, we applied quantitative proteomics to determine global cell cycle changes in the profiles of MAPs in human and Drosophila cells. This uncovered a wide range of cell cycle regulations of MAPs previously unidentified. Secondly, systematic studies of human kinesins highlighted an overlooked aspect of kinesins: most mitotic kinesins suppress their affinity to microtubules or reduce their protein levels in interphase in combination with nuclear localization. Thirdly, in-depth analysis of a novel Drosophila MAP (Mink) revealed that the suppression of the microtubule affinity of this mitotic MAP in combination with nuclear localization is essential for microtubule organization in interphase, and phosphorylation of Mink is needed for kinetochore-microtubule attachment in mitosis. Thus, this first comprehensive analysis of MAP regulation for the interphase/mitosis transition advances our understanding of kinesin biology and reveals the prevalence and importance of multi-layered MAP regulation.Microtubules are universally found in eukaryotic cells and are involved in diverse processes including cell division, polarity, and intracellular transport. A striking feature of microtubules is that they change their dynamics and organization depending on cellular contexts. Proteins that interact with microtubules, collectively called microtubule-associated proteins (MAPs),1 are considered to play a major role in determining microtubule dynamics and organization.Although MAPs in general lack recognizable sequence motifs, many MAPs from various sources have been successfully identified by means of biochemical purification followed by mass spectrometry (14). However, functional analysis is more problematic, as hundreds of MAPs can interact with microtubules. In addition, multiple MAPs have functional redundancy (57), making their biological function often difficult to determine, which results in their importance being grossly underappreciated. Furthermore, it is challenging to understand how MAPs collectively determine the diverse organization and dynamics of microtubules in different cells.One of the most dramatic changes of microtubule organization is found at the transition from interphase to mitosis. During mitosis, microtubules are much more dynamic and are organized into a dense bipolar structure, the spindle, whereas microtubules in interphase are less dynamic and are arranged in a radial array. This transition is rapid and is thought to reflect mainly a change in the activities of both motor and nonmotor MAPs (8); however, we do not have sufficient knowledge of how MAPs themselves are regulated. It is crucial to identify and understand the regulation of MAPs whose activities change in the cell cycle, and how they collectively change microtubule dynamics and organization. Misregulation of such MAPs could interfere with chromosome segregation or cell polarity and potentially contribute to oncogenesis (9). Also, this misregulation can be used to elucidate important functions that are masked due to functional redundancy.We hypothesize that some proteins bind to microtubules only during mitosis and are released from microtubules in interphase. The binding of such proteins to spindle microtubules in mitosis could collectively trigger the formation of the functional spindle, and, of equal importance, removing such proteins from microtubules at the mitotic exit could be essential for disassembling the spindle and proper organization and/or function of interphase microtubules. Conversely, some proteins may bind to microtubules specifically during interphase. No studies have been reported that systematically identify proteins whose microtubule-binding activities change between interphase and mitosis.Here we report a combined approach integrating three levels of analyses to gain insights into how MAPs are regulated as a whole to drive microtubule reorganization at the transition between interphase and mitosis. Firstly, we applied proteomics to determine the quantitative change of the global MAP profile between mitosis and interphase in both human and Drosophila cells. Secondly, we systematically analyzed the human kinesin superfamily for cell cycle localization in relation to microtubule association to gain insight into the general principle of MAP regulation in the cell cycle. Thirdly, we focused on one novel Drosophila MAP to understand the molecular mechanism and biological significance of MAP regulation. This integrated approach has provided the framework of MAP regulation critical for the interphase/mitosis transition.  相似文献   

3.
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously introduced tubulin by microinjection of biotin-labeled tubulin and the turnover rate of microtubule bundles by photoactivation of caged fluorescein- labeled tubulin. The injected biotin-labeled tubulin was rapidly incorporated into distal ends of preexisting microtubule bundles, suggesting a concentration of the available ends of microtubules at this region. Although homogenous staining of microtubule bundles with antibiotin antibody was observed 2 h after injection, the photoactivation study indicated that turnover of microtubule bundles was extremely suppressed and < 10% of tubulin molecules would be exchanged within 1 h. Multiple photoactivation experiments provided evidence that neither catastrophic disassembly at the distal ends of bundles nor concerted disassembly due to treadmilling at the proximal ends could explain the observed rapid incorporation of exogenously introduced tubulin molecules. We conclude that microtubules bundled by MAP2C molecules are very stable while the abrupt increase of free tubulin molecules by microinjection results in rapid assembly from the distal ends within the bundles as well as free nucleation of small microtubules which are progressively associated laterally with preexisting microtubule bundles. This is the first detailed study of the function of MAPs on the dynamics of microtubules in vivo.  相似文献   

4.
MAP 4 is a ubiquitous microtubule-associated protein thought to play a role in the polymerization and stability of microtubules in interphase and mitotic cells. We have analyzed the behavior of protein domains of MAP 4 in vivo using chimeras constructed from these polypeptides and the green fluorescent protein (GFP). GFP-MAP 4 localizes to microtubules; this is confirmed by colocalization of GFP-MAP 4 with microtubules that have incorporated microinjected rhodamine-tubulin, and by loss of localized fluorescence after treatment of cells with anti-microtubule agents. Different subdomains of MAP 4 have distinct effects on microtubule organization and dynamics. The entire basic domain of MAP 4 reorganizes microtubules into bundles and stabilizes these arrays against depolymerization with nocodazole. Within the basic domain, the PGGG repeats, which are conserved with MAP 2 and tau, have a weak affinity for microtubules and are dispensable for microtubule binding, whereas the MAP 4-unique PSP region can function independently in binding. The projection domain shows no microtubule localization, but does modulate the association of various binding subdomains with microtubules. The acidic carboxy terminus of MAP 4 strongly affects the microtubule binding characteristics of the other domains, despite constituting less than 6% of the protein. These data show that MAP 4 association with microtubules is modulated by sequences both within and outside the basic domain. Further, our work demonstrates that GFP chimeras will allow an in vivo analysis of the effects of MAPs and their variants on microtubule dynamics in real time.  相似文献   

5.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survivin by small interfering RNAs (siRNAs) increased both the number of microtubules nucleated by centrosomes and the incidence of microtubule catastrophe, the transition from microtubule growth to shrinking. In contrast, survivin overexpression reduced centrosomal microtubule nucleation and suppressed both microtubule dynamics in mitotic spindles and bidirectional growth of microtubules in midbodies during cytokinesis. siRNA depletion or pharmacologic inhibition of another chromosomal passenger protein Aurora B, had no effect on microtubule dynamics or nucleation in interphase or mitotic cells even though mitosis was impaired. We propose a model in which survivin modulates several mitotic events, including spindle and interphase microtubule organization, the spindle assembly checkpoint and cytokinesis through its ability to modulate microtubule nucleation and dynamics. This pathway may affect the microtubule-dependent generation of aneuploidy and defects in cell polarity in cancer cells, where survivin is commonly up-regulated.  相似文献   

6.
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ase1p localizes to sites of microtubule overlaps associated with microtubule organizing centers at both interphase and mitosis. ase1Delta mutants fail to form overlapping antiparallel microtubule bundles, leading to interphase nuclear positioning defects, and premature mitotic spindle collapse. FRAP analysis revealed that interphase ase1p at overlapping microtubule minus ends is highly dynamic. In contrast, mitotic ase1p at microtubule plus ends at the spindle midzone is more stable. We propose that ase1p functions to organize microtubules into overlapping antiparallel bundles both in interphase and mitosis and that ase1p may be differentially regulated through the cell cycle.  相似文献   

7.
E-MAP-115 (ensconsin) is a microtubule-associated protein (MAP) abundant in carcinoma and other epithelia-derived cells. We expressed chimeras of green fluorescent protein (GFP) conjugated to ensconsin's N-terminal MT-binding domain (EMTB), to study distribution, dynamics, and function of the MAP in living cells. We tested the hypothesis that behavior of expressed GFP-EMTB accurately matched behavior of endogenous ensconsin. Like endogenous MAP, GFP-EMTB was associated with microtubules in living or fixed cells, and microtubule association of either molecule was impervious to extraction with nonionic detergents. In cell lysates both GFP-EMTB and endogenous ensconsin were dissociated from microtubules by identical salt extraction conditions, and both molecules remained bound to a calcium-stable subset of Taxol-stabilized microtubules. These data show that microtubule association of ensconsin was affected neither by the absence of domains other than its microtubule-binding domain, nor by the presence of appended GFP. We took advantage of this finding to generate constructs in which additional GFP moieties were attached to EMTB, to obtain a more intensely fluorescent reporter of in vivo MAP binding. We show here that expression of chimeric proteins consisting of five GFP molecules attached to a single EMTB molecule produces brightly labeled microtubules without compromising the behavior of the MAP or the microtubules to which it is attached. Thus, we have demonstrated the utility of chimeric proteins containing GFP multimers as authentic reporters of ensconsin distribution and dynamics; expression of these GFP-EMTB chimeric molecules also provides a non-perturbing label of the microtubule system in living cells.  相似文献   

8.
LLCPK-1 cells were transfected with a green fluorescent protein (GFP)-alpha tubulin construct and a cell line permanently expressing GFP-alpha tubulin was established (LLCPK-1alpha). The mitotic index and doubling time for LLCPK-1alpha were not significantly different from parental cells. Quantitative immunoblotting showed that 17% of the tubulin in LLCPK-1alpha cells was GFP-tubulin; the level of unlabeled tubulin was reduced to 82% of that in parental cells. The parameters of microtubule dynamic instability were compared for interphase LLCPK-1alpha and parental cells injected with rhodamine-labeled tubulin. Dynamic instability was very similar in the two cases, demonstrating that LLCPK-1alpha cells are a useful tool for analysis of microtubule dynamics throughout the cell cycle. Comparison of astral microtubule behavior in mitosis with microtubule behavior in interphase demonstrated that the frequency of catastrophe increased twofold and that the frequency of rescue decreased nearly fourfold in mitotic compared with interphase cells. The percentage of time that microtubules spent in an attenuated state, or pause, was also dramatically reduced, from 73.5% in interphase to 11.4% in mitosis. The rates of microtubule elongation and rapid shortening were not changed; overall dynamicity increased 3.6-fold in mitosis. Microtubule release from the centrosome and a subset of differentially stable astral microtubules were also observed. The results provide the first quantitative measurements of mitotic microtubule dynamics in mammalian cells.  相似文献   

9.
The transition from interphase to mitosis is marked by a dramatic change in microtubule dynamics resulting in the reorganization of the microtubule network that culminates in mitotic spindle formation. While the molecular basis for this change in microtubule organization remains obscure, it is currently thought that a balance in the activity of microtubule stabilizing and destabilizing factors regulates how dynamic cellular microtubules are. By mixing the microtubule stabilizer XMAP215 and the microtubule destabilizer XKCM1, reconstitution of in vivo-like microtubule dynamics has now been achieved in vitro.  相似文献   

10.
Injection of purified autoantibodies against human centromeric proteins into HeLa cells during interphase disrupts the organization of the kinetochore and interferes with chromosomal movements during the subsequent mitosis even though the chromosomes retain the ability to bind microtubules. We have investigated the hypothesis that this phenotype arises from effects on cytoplasmic dynein, the microtubule motor protein. In previous experiments we found that introduction of anticentromere antibodies into cell nuclei during the G1- or S-phases causes a prometaphase-like arrest, while injections during G2-phase cause a metaphase arrest. We show here that, in both cases, the level of detectable cytoplasmic dynein at kinetochores is significantly decreased. In contrast, when injected cells were permitted to enter mitosis in the absence of microtubules (conditions where trilaminar kinetochores could be detected by electron microscopy), the intensity of dynein labeling on the kinetochores was identical to that seen in uninjected control cells exposed to colcemid. Therefore, the loss of dynein label on mitotic kinetochores was correlated both with the injection of anticentromere antibodies and with the presence of intact spindle microtubules. We suggest that the injection of anticentromere antibodies somehow weakens the association of dynein with the kinetochore, so that when microtubules are present, these motor molecules are pulled away from the kinetochores as they generate force. This model offers an explanation for the failure of chromosomes of injected cells to move normally in mitosis even though they have attached microtubules.  相似文献   

11.
The Arabidopsis thaliana MAP65-1 and MAP65-2 genes are members of the larger eukaryotic MAP65/ASE1/PRC gene family of microtubule-associated proteins. We created fluorescent protein fusions driven by native promoters that colocalized MAP65-1 and MAP65-2 to a subset of interphase microtubule bundles in all epidermal hypocotyl cells. MAP65-1 and MAP65-2 labeling was highly dynamic within microtubule bundles, showing episodes of linear extension and retraction coincident with microtubule growth and shortening. Dynamic colocalization of MAP65-1/2 with polymerizing microtubules provides in vivo evidence that plant cortical microtubules bundle through a microtubule-microtubule templating mechanism. Analysis of etiolated hypocotyl length in map65-1 and map65-2 mutants revealed a critical role for MAP65-2 in modulating axial cell growth. Double map65-1 map65-2 mutants showed significant growth retardation with no obvious cell swelling, twisting, or morphological defects. Surprisingly, interphase microtubules formed coaligned arrays transverse to the plant growth axis in dark-grown and GA(4)-treated light-grown map65-1 map65-2 mutant plants. We conclude that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent mechanism for specifying axial cell growth in the expanding hypocotyl, independent of any mechanical role in microtubule array organization.  相似文献   

12.
The ends of growing microtubules (MTs) accumulate a set of diverse factors known as MT plus end-tracking proteins (+TIPs), which control microtubule dynamics and organization. In this paper, we identify SLAIN2 as a key component of +TIP interaction networks. We showed that the C-terminal part of SLAIN2 bound to end-binding proteins (EBs), cytoplasmic linker proteins (CLIPs), and CLIP-associated proteins and characterized in detail the interaction of SLAIN2 with EB1 and CLIP-170. Furthermore, we found that the N-terminal part of SLAIN2 interacted with ch-TOG, the mammalian homologue of the MT polymerase XMAP215. Through its multiple interactions, SLAIN2 enhanced ch-TOG accumulation at MT plus ends and, as a consequence, strongly stimulated processive MT polymerization in interphase cells. Depletion or disruption of the SLAIN2-ch-TOG complex led to disorganization of the radial MT array. During mitosis, SLAIN2 became highly phosphorylated, and its interaction with EBs and ch-TOG was inhibited. Our study provides new insights into the molecular mechanisms underlying cell cycle-specific regulation of MT polymerization and the organization of the MT network.  相似文献   

13.
Microtubule-associated proteins (MAPs) that copurify with tubulin through multiple cycles of in vitro assembly have been implicated as regulatory factors and effectors in the in vivo activity of microtubules. As an approach to the analysis of the functions of these molecules, a collection of lymphocyte hybridoma monoclonal antibodies has been generated using MAPs from HeLa cell microtubule protein as antigen. Two of the hybridoma clones secrete IgGs that bind to distinct sites on what appears to be a 200,000-dalton polypeptide. Both immunoglobulin preparations stain interphase and mitotic apparatus microtubules in cultured human cells. One of the clones (N-3B4.3.10) secretes antibody that reacts only with cells of human origin, while antibody from the other hybridoma (N-2B5.11.2) cross-reacts with BSC and PtK1 cells, but not with 3T3 cells. In PtK1 cells the N-2B5 antigen is associated with the microtubules of the mitotic apparatus, but there is no staining of the interphase microtubule array; rather, the antibody stains an ill-defined juxtanuclear structure. Further, neither antibody stains vinblastine crystals in either human or marsupial cells at any stage of the cell cycle. N-2B5 antibody microinjected into living PtK1 cells binds to the mitotic spindle, but does not cause a rapid dissolution of either mitotic or interphase microtubule structures. When injected before the onset of anaphase, however, the N-2B5 antibody inhibits proper chromosome partition in mitotic PtK1 cells. N-2B5 antibody injected into interphase cells causes a redistribution of MAP antigen onto the microtubule network.  相似文献   

14.
One mechanism for the reappearance of G protein-coupled receptors after agonist activation is microtubule-based transport. In pressure-overload cardiac hypertrophy, there is downregulation of G protein-coupled receptors and the appearance of a densified microtubule network extensively decorated by a microtubule-associated protein, MAP 4. Our hypothesis is that overdecoration of a dense microtubule network with this structural protein, as in hypertrophied myocardium, would impede receptor recovery. We tested this hypothesis by studying muscarinic acetylcholine receptor (mAChR) internalization and recovery after agonist stimulation in neuroblastoma cells. Exposure of cells to carbachol, a muscarinic receptor agonist, decreased membrane receptor binding activity. After carbachol withdrawal, receptor binding recovered toward the initial value. When microtubules were depolymerized before carbachol withdrawal, mAChR recovery was only 44% of that in intact cells. Cells were then infected with an adenovirus containing MAP 4 cDNA. MAP 4 protein decorated the microtubules extensively, and receptor recovery upon carbachol withdrawal was reduced to 54% of control. Thus muscarinic receptor recovery after agonist exposure is microtubule dependent, and MAP 4 decoration of microtubules inhibits receptor recovery.  相似文献   

15.
Lopus M  Panda D 《The FEBS journal》2006,273(10):2139-2150
Sanguinarine has been shown to inhibit proliferation of several types of human cancer cell including multidrug-resistant cells, whereas it has minimal cytotoxicity against normal cells such as neutrophils and keratinocytes. By analyzing the antiproliferative activity of sanguinarine in relation to its effects on mitosis and microtubule assembly, we found that it inhibits cancer cell proliferation by a novel mechanism. It inhibited HeLa cell proliferation with a half-maximal inhibitory concentration of 1.6 +/- 0.1 microM. In its lower effective inhibitory concentration range, sanguinarine depolymerized microtubules of both interphase and mitotic cells and perturbed chromosome organization in mitotic HeLa cells. At concentrations of 2 microM, it induced bundling of interphase microtubules and formation of granular tubulin aggregates. A brief exposure of HeLa cells to sanguinarine caused irreversible depolymerization of the microtubules, inhibited cell proliferation, and induced cell death. However, in contrast with several other microtubule-depolymerizing agents, sanguinarine did not arrest cell cycle progression at mitosis. In vitro, low concentrations of sanguinarine inhibited microtubule assembly. At higher concentrations (> 40 microM), it altered polymer morphology. Further, it induced aggregation of tubulin in the presence of microtubule-associated proteins. The binding of sanguinarine to tubulin induces conformational changes in tubulin. Together, the results suggest that sanguinarine inhibits cell proliferation at least in part by perturbing microtubule assembly dynamics.  相似文献   

16.
Spindle microtubule dynamics: modulation by metabolic inhibitors   总被引:2,自引:0,他引:2  
Recent experiments have shown that spindle microtubules are exceedingly dynamic. Measurements of fluorescence recovery after photobleaching (FRAP), in cells previously microinjected with fluorescent tubulin, provide quantitative information concerning the rate of turnover, or exchange, of tubulin subunits with the population of microtubules in living cells at steady state. In an effort to elucidate the pathways and factors that regulate tubulin exchange with microtubules in living cells, we have investigated the energy requirements for tubulin turnover as measured by FRAP. Spindle morphology was not detectably altered in cells incubated with 5 mM sodium azide and 1 mM 2-deoxyglucose (Az/DOG) for 5 minutes, as assayed by polarized light microscopy and antitubulin immunofluorescence. In FRAP experiments on these ATP-depleted cells, the average rate of recovery and the average percent of bleached fluorescence recovered were reduced to 37% and 30% of controls, respectively. When the inhibitors were removed, cells continued through mitosis, and rapid FRAP was restored. In the presence of azide and glucose, the rate of recovery and percent of fluorescence recovered were only slightly reduced, demonstrating that energy production via glycolysis can support microtubule turnover. Longer incubations with Az/DOG altered the microtubule organization in mitotic cells: astral microtubules lengthened and spindle fibers shortened. Furthermore, both astral and spindle microtubules became resistant to nocodazole-induced disassembly under these conditions. Together these observations indicate that microtubule dynamics require ATP and suggest a relationship between microtubule organization and turnover.  相似文献   

17.
Regulation of microtubule dynamics and organization in mitosis by a number of microtubule-associated proteins (MAPs) is required for proper bipolar spindle assembly, yet the precise mechanisms by which many MAPs function are poorly understood. One interesting class of MAPs is known to localize to the nucleus during interphase yet fulfill important spindle functions during mitosis. We have identified Xenopus nuclear factor 7 (Xnf7), a developmental regulator of dorsal-ventral patterning, as a microtubule-binding protein that also associates with the nuclear import receptor importin alpha/beta. Xnf7 localized to interphase nuclei and metaphase spindles both in Xenopus egg extracts and cultured cells. Xnf7-depleted spindles were hypersensitive to microtubule-depolymerizing agents. Functional characterization of Xnf7 revealed that it binds directly to microtubules, exhibits RING-finger-dependent E3-ubiquitin-ligase activity, and has C-terminal-dependent microtubule-bundling activity. The minimal microtubule-bundling domain of Xnf7 was sufficient to rescue the spindle-hypersensitivity phenotype. Thus, we have identified Xnf7 as a nuclear MAP whose microtubule-bundling activity, but not E3-ligase activity, contributes to microtubule organization and spindle integrity. Characterization of the multiple activities of Xnf7 may have implications for understanding human diseases caused by mutations in related proteins.  相似文献   

18.
《The Journal of cell biology》1983,97(5):1476-1490
A rat monoclonal antibody against yeast alpha-tubulin (clone YL 1/2; Kilmartin, J. V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) that reacts specifically with the tyrosylated form of alpha- tubulin and readily binds to tubulin in microtubules when injected into cultured cells (see Wehland, J., M. C. Willingham, and I. V. Sandoval, 1983, J. Cell Biol., 97:1467-1475) was used to study microtubule organization and function in living cells. Depending on the concentration of YL 1/2 that was injected the following striking effects were observed: (a) When injected at a low concentration (2 mg IgG/ml in the injection solution), where microtubules were decorated without changing their distribution, intracellular movement of cell organelles (saltatory movement) and cell translocation were not affected. Intermediate concentrations (6 mg IgG/ml) that induced bundling but no perinuclear aggregation of microtubules abolished saltatory movement and cell translocation, and high concentrations (greater than 12 mg IgG/ml) that induced perinuclear aggregation of microtubules showed the same effect. (b) YL 1/2, when injected at intermediate and high concentrations, arrested cells in mitosis. Such cells showed no normal spindle structures. (c) Injection of an intermediate concentration of YL 1/2 that stopped saltatory movement caused little or no aggregation of intermediate filaments and no dispersion of the Golgi complex. After injection of high concentrations, resulting in perinuclear aggregation of microtubules, intermediate filaments formed perinuclear bundles and the Golgi complex became dispersed analogous to results obtained after treatment of cells with colcemid. (d) When rhodamine-conjugated YL 1/2 was injected at concentrations that stopped saltatory movement and arrested cells in mitosis, microtubule structures could be visualized and followed for several hours in living cells by video image intensification microscopy. They showed little or no change in distribution and organization during observation, even though these microtubule structures appeared not to be stabilized by injected YL 1/2 since they were readily depolymerized by colcemid or cold treatment and repolymerized upon drug removal or rewarming to 37 degrees C, respectively. These results are discussed in terms of the participation of microtubules in cellular activities such as cell movement and cytoplasmic organization and in terms of the specificity of YL 1/2 for the tyrosylated form of alpha-tubulin.  相似文献   

19.
We recently reported that AFH14 participated in microtubule and actin filament interaction in cell division, and the AFH14 (FH1FH2) was important to the directly binding activity of microtubules and microfilaments. To preliminarily understand the function and localization of AFH14 in non-dividing cells, we overexpressed FH1FH2-RFP in onion epidermal cells, and found a fluorescence labeled filamentous network. The result of double labeling with different cytoskeleton reporter proteins indicated that FH1FH2-RFP co-localized with cortical microtubules. Treatment of cells expressing FH1FH2-RFP with cytoskeleton disrupting drugs confirms that FH1FH2-RFP binds to microtubules. Moreover, the binding of FH1FH2-RFP to microtubules were revealed to be dynamic by fluorescence recovery after photobleaching (FRAP) experiment. Time-lapse confocal microscopy showed that FH1FH2-RFP could display a dynamics similar to the microtubule dynamic instability. These data suggest that FH1FH2 domain may lead AFH14 function on cortical microtubules in non-dividing cells, and FH1FH2-RFP may be utilized as a microtubule reporter protein in living onion epidermal cells.Key words: cortical microtubule, AFH14, non-dividing cell, microtubule dynamics, FRAP  相似文献   

20.
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min after injection. MAP2 prepared in the presence of phosphatase inhibitors, containing 25 mol/mol of phosphate (MAP2-P25), also bound completely. However, MAP2 whose phosphate content had been reduced to 2 mol phosphate per mol by treatment with alkaline phosphatase in vitro (MAP2-P2) did not initially bind to microtubules, suggesting that phosphorylation of certain sites in MAP2 is essential for binding to microtubules. MAP2-P10 was further phosphorylated in vitro via an endogenously bound protein kinase activity, adding 12 more phosphates, giving a total of 22 mol/mol. This preparation (MAP2-P10+12) also did not bind to microtubules. Assay of the binding of these preparations to taxol-stabilized tubulin polymers in vitro confirmed that their binding to tubulin depended on the state of phosphorylation, but the results obtained in microinjection experiments differed in some cases from in vitro binding. The results suggest that the site of phosphate incorporation rather than the amount is the critical factor in determining microtubule binding activity of MAP2. Furthermore, the interaction of MAP2 with cellular microtubules may be influenced by additional factors that are not evident in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号