首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA identification of non-invasive samples is a potentially useful tool for monitoring small mammal species. Here we describe a novel method for identifying five small mammal species: wood mouse, bank vole, common shrew, pygmy shrew and water shrew. Species-specific real-time polymerase chain reaction primers were designed to amplify fragments of the mitochondrial cytochrome b gene from hair and scat samples. We also amplified nuclear DNA from scats, demonstrating their potential as a source of DNA for population genetic studies.  相似文献   

2.
Aims: The gram‐positive bacterial genus Lactococcus has been taxonomically classified into seven species (Lactococcus lactis, Lactococcus garvieae, Lactococcus piscium, Lactococcus plantarum, Lactococcus raffinolactis, Lactococcus chungangensis and Lactococcus fujiensis). This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of the seven lactococcal species, as well as to differentiate the two industrially important dairy subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris. Methods and Results: A multiplex PCR primer set was designed based on the nucleotide sequences of the 16S rRNA gene of the seven lactococcal species. The specificity of the established one‐step multiplex PCR scheme was verified using more than 200 bacterial strains, in which a complete sequence match was confirmed by partial sequencing of their 16S rRNA gene. Conclusions: The one‐step multiplex PCR enables the identification and speciation of bacterial strains belonging to the genus Lactococcus and the differentiation of strains of L. lactis subsp. lactis and L. lactis subsp. cremoris. Significance and Impact of the Study: This work provides an efficient method for identification of lactococcal strains of industrial importance.  相似文献   

3.
A fast and simple method for capripoxvirus species identification has been developed. The method is based on multiplex polymerase chain reaction (MPCR) with species-specific primers and does not require nucleotide sequencing or restriction analysis of PCR products. To differentiate vaccine stains used in Russia and countries of the former Soviet Union from epizootic isolates of sheep pox virus, a method based on restriction analysis of the ankyrin-repeat protein gene fragment amplified by PCR has been developed. Being highly specific, both methods may be used for routine diagnosis of capripoxvirus-associated diseases.  相似文献   

4.
A fast and simple method for capripoxvirus species identification has been developed. The method is based on multiplex polymerase chain reaction (MPCR) with species-specific primers and does not require nucleotide sequencing or restriction analysis of PCR products. To differentiate vaccine strains used in Russia and countries of the former Soviet Union from epizootic isolates of sheeppox virus, a method based on restriction analysis of the ankyrin-repeat protein gene fragment amplified by PCR has been developed. Being highly specific, both methods may be used for routine diagnosis of capripoxvirus-associated diseases.  相似文献   

5.
A number of avian species are difficult to sex morphologically, especially as nestlings. Like other avian species, many species of Falconiformes are sexually monomorphic. Therefore, it is desirable that new methods based on DNA analysis are established in Falconiformes and other sexual monomorphic species. We identified sex in Falconiformes by two alternative methods. First, we used a sexing method based on the intronic length variation between CHD1W and CHD1Z using primers flanking the intron. In this method, two species of Falconidae could be identified for sexing. However, six species of Accipitridae could not, because they have few length variations. The second method used was based on differences in sequences between CHD1W and CHD1Z. From sequence analysis, a 3'-terminal mismatch primer on point mutation conserved among Falconiformes was designed, and identification of sex with the amplification refractory mutation system (ARMS) was performed. This method could identify sex in all species tested. In addition, because the 3'-terminal mismatch primer was designed on a point mutation conserved among Falconiformes, ARMS with these primers may identify sex in all Falconiformes. These are simple and rapid sexing methods, since only polymerase chain reaction (PCR) and agarose electrophoresis are required. In conclusion, sex identification by an alternative PCR approach based on intronic length variation and on differences in sequences between CHD1W and CHD1Z proved applicable to and useful for Falconiformes.  相似文献   

6.
The polymerase chain reaction and hepatitis C virus diagnosis   总被引:1,自引:0,他引:1  
Abstract: In the absence of tissue culture, electron microscopy or assays for viral antigen, the direct detection of hepatitis C virus (HCV) is by necessity dependent upon nucleic acid hybridisation methods. Of the available methods, amplification of HCV cDNA by polymerase chain reaction (PCR) commends itself by virtue of its extreme sensitivity and its consequent ability to detect the very low levels of HCV-RNA that are present in many clinical samples. In this review the development and evolution of PCR techniques for HCV detection are described and a number of clinical applications are considered in detail. The application include diagnosis of acute infection during the seronegative window period prior to the appearance of HCV antibodies, and diagnosis of HCV infection in the immunosuppressed. PCR also enables identification of chronic viraemic carrier state and it permits accurate monitoring of the antiviral effects of drugs such as interferon. Confirmation of the specificity HCV antibody assays and detection of HCV contamination of blood donations and blood products are other important areas in which PCR techniques have proved invaluable. In addition, PCR-based techniques underlie an increasing number of molecular epidemiological and genotyping studies and they are providing insights into the details of HCV cellular tropism and replication. A number of logistic problems and operational difficulties are also discussed. Despite these limitations it is concluded that PCR will continue to make significant contributions to both clinical practice and to our understanding of the basic biology of HCV infection.  相似文献   

7.
8.
The precise identification and classification of Leishmania species is important for public health surveillance since different species cause different clinical features of the disease. A highly specific polymerase chain reaction (PCR) panel was developed to enable the identification of the five major Leishmania species that cause New World cutaneous leishmaniases. The primers used for this panel were designed to distinguish the polymorphism in sequences of commonly amplified DNA bands of the parasites produced by arbitrarily primed PCR. These polymorphism-specific PCR diagnoses were performed with formalin-fixed biopsy specimens of the leishmanial lesions from four patients in Ecuador and one hamster skin lesion, and these lesions were determined to be caused by Leishmania (Viannia) panamensis, L. (Leishmania) mexicana, and L. (L.) amazonensis. The PCR panel may offer an important and practical approach to the standardized identification of Leishmania species in field examinations.  相似文献   

9.
The polymerase chain reaction   总被引:16,自引:0,他引:16  
The polymerase chain reaction (PCR) is a powerful new method for 'in vitro cloning'. It can selectively amplify a single molecule of template DNA several millionfold in a few hours and has made possible new approaches to problems in molecular genetics, evolutionary biology, and development.  相似文献   

10.
This essay on the polymerase chain reaction is one of a series developed as part of FASEB's efforts to educate the general public, and the legislators whom it elects, about the benefits of fundamental biomedical research-particularly how investment in such research leads to scientific progress, improved health, and economic well-being.  相似文献   

11.
以合成的两段插入序列为上、下游引物用PCR法直接筛选插入有虎纹捕鸟蛛毒素Ⅰ(HWTX-Ⅰ)cDNA的重组阳性克隆。并用PCR法快速鉴定重组体中插入片段的正、反连接方向,扩增用引物是以位于克隆位点上游的一段载体序列上游引物,以插入序列为下游引物。对100个单克隆进行了上述两次PCR筛选鉴定,选取2个有靶片段插入并且为正向连接的重组子进行测序,其结果证实了插入片段及其方向的正确性。  相似文献   

12.
The diagnosis of cutaneous leishmaniasis (CL) may depend on the detection of the parasite in histologic sections, the growth of the promastigotes in culture, or the identification of parasite by other techniques. We performed polymerase chain reaction (PCR) on paraffin-embedded biopsies to determine the validity of this technique for diagnosis of CL. PCR was used to detect the parasite using 2 different DNA extraction methods. PCR was positive in all 20 cases when the Leishmania parasite was detected by light microscopy. Twenty-seven of 34 cases that were negative microscopically for the parasite were positive using PCR. The first extraction method of DNA identified leishmanial DNA in 41 of 54 cases (75.9%); the second extraction of DNA was positive in 47 of 54 cases (87%). PCR was negative in all of the nonleishmaniasis cases. The PCR-based method appears to be a useful diagnostic approach for identification of suspected cases of CL.  相似文献   

13.
Flagellin gene was used as target sequence to detect and distinguishC. coli andC. jejuni by a “nested PCR” technique. The method shows a high level of sensitivity and specificity. Application of this rapid diagnostic tool could provide further information about epidemiological and pathogenetic implications of each of these two microorganisms.  相似文献   

14.
We describe a polymerase chain reaction (PCR) assay that detects avian malarial infection across divergent host species and parasite lineages representing both Plasmodium spp. and Haemoproteus spp. The assay is based on nucleotide primers designed to amplify a 286-bp fragment of ribosomal RNA (rRNA) coding sequence within the 6-kb mitochondrial DNA malaria genome. The rRNA malarial assay outperformed other published PCR diagnostic methods for detecting avian infections. Our data demonstrate that the assay is sensitive to as few as 10(-5) infected erythrocytes in peripheral blood. Results of avian population surveys conducted with the rRNA assay suggest that prevalences of malarial infection are higher than previously documented, and that studies based on microscopic examination of blood smears may substantially underestimate the extent of parasitism by these apicomplexans. Nonetheless, because these and other published primers miss small numbers of infections detected by other methods, including inspection of smears, no assay now available for avian malaria is universally reliable.  相似文献   

15.
A mathematical notation is introduced to represent, at a symbolic level, different mechanisms of DNA recombination, and a 'PCR lemma' is proven by analytically describing the combinatorial properties of the polymerase chain reaction process. This approach led to the discovery of novel techniques, based on a form of PCR which we called cross pairing PCR (briefly XPCR). They were mathematically analyzed and already experimentally proven in different contexts, such as DNA extraction and recombination. Thus, a mathematical analysis of standard methodologies may highlight novel mechanisms of DNA recombination and this can provide new technologies for DNA manipulation.  相似文献   

16.
624 Corynebacterium diphtheriae strains, newly isolated from patients and carriers, were studied with the use of the methods of gel immunodiffusion (Elek's test) and polymerase chain reaction (PCR). In the evaluation of 388 C. diptheriae strains, found to be toxigenic in PCR, the results of Elek's test coincided with those of PCR on 98% of cases. In 38 out of 143 strains (26.5%), nontoxigenic according to the results of Elek's test, the presence of the A-fragment of the tox-gene was established. Subculturing in nutrient media made it possible to determine the presence of toxin in 19 out of 38 of these strains; the remaining strains, isolated mainly from carriers, were found to have the "silent" gene. The advantage of using PCR for the detection of toxigenic and nontoxigenic C. diphtheriae strains of different origin was shown.  相似文献   

17.
Billfishes are important fishery resources traded and consumed worldwide. As morphological traits are usually removed during processing, molecular methods are applied to identify billfish products. In this study, the approaches of quantitative real-time PCR were developed to identify the six billfish species (Istiompax indica, Istiophorus platypterus, Kajikia audax, Makaira nigricans, Tetrapturus angustirostris and Xiphias gladius) widely distributed in the north-western Pacific Ocean. The developed singleplex systems showed high fidelities to each of the six species via either examining the ΔCt values or melting curve patterns. For samples containing multiple species, individual species are identifiable by a quantitative real-time PCR assay that includes all the singleplex systems. A multiplex system was also developed to identify unknown samples composed of a single species. The methods developed in this study provide a fast and high-throughput manner to identify the north-western Pacific billfish species when morphological traits are unavailable, such as in processed products.  相似文献   

18.
Abstract A hemolysis gene ( hlx ) which lyses sheep erythrocytes on blood agar plates when expressed in Escherichia coli was cloned from Vibrio cholerae . The cloned gene is predicted to encode a polypeptide of 92 amino acid residues with a deduced molecular mass of 10451. E. coli transformed with this gene lysed sheep, goose, horse and chicken erythrocytes but not those of guinea pig and human. The hlx gene was observed in classical- and El Tor-biotype V. cholerae O1, V. cholerae non-O1, and V. mimicus , but not in V. parahaemolyticus .  相似文献   

19.
The real-time polymerase chain reaction   总被引:20,自引:0,他引:20  
The scientific, medical, and diagnostic communities have been presented the most powerful tool for quantitative nucleic acids analysis: real-time PCR [Bustin, S.A., 2004. A-Z of Quantitative PCR. IUL Press, San Diego, CA]. This new technique is a refinement of the original Polymerase Chain Reaction (PCR) developed by Kary Mullis and coworkers in the mid 80:ies [Saiki, R.K., et al., 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230, 1350], for which Kary Mullis was awarded the 1993 year's Nobel prize in Chemistry. By PCR essentially any nucleic acid sequence present in a complex sample can be amplified in a cyclic process to generate a large number of identical copies that can readily be analyzed. This made it possible, for example, to manipulate DNA for cloning purposes, genetic engineering, and sequencing. But as an analytical technique the original PCR method had some serious limitations. By first amplifying the DNA sequence and then analyzing the product, quantification was exceedingly difficult since the PCR gave rise to essentially the same amount of product independently of the initial amount of DNA template molecules that were present. This limitation was resolved in 1992 by the development of real-time PCR by Higuchi et al. [Higuchi, R., Dollinger, G., Walsh, P.S., Griffith, R., 1992. Simultaneous amplification and detection of specific DNA-sequences. Bio-Technology 10(4), 413-417]. In real-time PCR the amount of product formed is monitored during the course of the reaction by monitoring the fluorescence of dyes or probes introduced into the reaction that is proportional to the amount of product formed, and the number of amplification cycles required to obtain a particular amount of DNA molecules is registered. Assuming a certain amplification efficiency, which typically is close to a doubling of the number of molecules per amplification cycle, it is possible to calculate the number of DNA molecules of the amplified sequence that were initially present in the sample. With the highly efficient detection chemistries, sensitive instrumentation, and optimized assays that are available today the number of DNA molecules of a particular sequence in a complex sample can be determined with unprecedented accuracy and sensitivity sufficient to detect a single molecule. Typical uses of real-time PCR include pathogen detection, gene expression analysis, single nucleotide polymorphism (SNP) analysis, analysis of chromosome aberrations, and most recently also protein detection by real-time immuno PCR.  相似文献   

20.
A polymerase chain reaction (PCR) protocol was developed for the specific detection of genes coding for type II polyhydroxyalkanoate (PHA) synthases. The primer-pair, I-179L and I-179R, was based on the highly conserved sequences found in the coding regions of Pseudomonas phaC1 and phaC2 genes. Purified genomic DNA or lysate of colony suspension can serve equally well as the target sample for the PCR, thus affording a simple and rapid screening of phaC1/C2-containing microorganisms. Positive samples yield a specific 540-bp PCR product representing partial coding sequences of the phaC1/C2 genes. Using the PCR method, P. corrugata 388 was identified for the first time as a medium-chain-length (mcl)-PHA producer. Electron microscopic study and PHA isolation confirmed the production of mcl-PHA in P. corrugata 388. The mcl-PHA of this organism has a higher molecular weight than that of similar polymers produced by other pseudomonads. Received: 16 August 1999 / Received revision: 23 December 1999 / Accepted: 4 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号