首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (78 compounds) of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as potent anticancer agents. The best prediction were obtained with a CoMFA standard model (q(2) = 0.530, r(2) = 0.903) and with CoMSIA combined steric, electrostatic, hydrophobic and hydrogen bond donor fields (q(2) = 0.548, r(2) = 0.909). Both models were validated by a test set of ten compounds producing very good predictive r(2) values of 0.935 and 0.842, respectively. CoMFA and CoMSIA contour maps were then used to analyze the structural features of ligands to account for the activity in terms of positively contributing physiochemical properties such as steric, electrostatic, hydrophobic and hydrogen bond donor fields. The resulting contour maps produced by the best CoMFA and CoMSIA models were used to identify the structural features relevant to the biological activity in this series of analogs. This study suggests that the highly electropositive substituents with low steric tolerance are required at 5 position of the pteridine ring and bulky electronegatve substituents are required at the meta-position of the phenyl ring. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for the design of deazapteridine-based analogs as anticancer agents.  相似文献   

2.
The 3D quantitative structure-activity relationships of 31 quinoline nuclei containing compounds and their biological activity have been investigated to establish various models. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies resulted in reliable and significant computational models. The obtained CoMFA model showed high predictive ability with q(2) = 0.592, r(2) = 0.966 and standard error of estimation (SEE) = 0.167, explaining majority of the variance in the data with two principal components. Predictions obtained with CoMSIA steric, electrostatic, hydrophobic, hydrogen-bond acceptor and donor fields (q(2) = 0.533, r(2) = 0.985) showed high prediction ability with minimum SEE (0.111) and four principal components. The information obtained from the CoMFA and CoMSIA contour maps can be utilized for the design and development of topoisomerase-II inhibitors for synthesis.  相似文献   

3.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on tetrahydrofuroyl-L-phenylalanine derivatives as VLA-4 antagonists. The best CoMFA and CoMSIA models that were generated using atom based alignment from a training set of twenty five tetrahydrofuroyl-L-phenylalanine derivatives, are six-component models with good statistics; CoMFA: r(2)(cv)=0.366, r(2)=0.983, s=0.099, F=172.661 and PRESS=4.435; CoMSIA: r(2)(cv)=0.528, r(2)=0.995, s=0.054, F=577.87 and PRESS=3.563. Both of these 3-D-QSAR models were validated using a test set of eleven compounds, whose predicted pIC(50) values fall within one log unit of the actual pIC(50). The contour diagrams obtained for the various CoMFA and CoMSIA field contributions can be mapped back onto structural features to explain the activity trends of the molecules analysed. Based on the spatial arrangement of the various field contributions, novel molecules with improved activity can be designed.  相似文献   

4.
In the present study, we have used an approach combining protein structure modeling, molecular dynamics (MD) simulation, automated docking, and 3D QSAR analyses to investigate the detailed interactions of CCR5 with their antagonists. Homology modeling and MD simulation were used to build the 3D model of CCR5 receptor based on the high-resolution X-ray structure of bovine rhodopsin. A series of 64 CCR5 antagonists, 1-amino-2-phenyl-4-(piperidin-1-yl)-butanes, were docked into the putative binding site of the 3D model of CCR5 using the docking method, and the probable interaction model between CCR5 and the antagonists were obtained. The predicted binding affinities of the antagonists to CCR5 correlate well with the antagonist activities, and the interaction model could be used to explain many mutagenesis results. All these indicate that the 3D model of antagonist-CCR5 interaction is reliable. Based on the binding conformations and their alignment inside the binding pocket of CCR5, three-dimensional structure-activity relationship (3D QSAR) analyses were performed on these antagonists using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Both CoMFA and CoMSIA provide statistically valid models with good correlation and predictive power. The q(2)(r(cross)(2)) values are 0.568 and 0.587 for CoMFA and CoMSIA, respectively. The predictive ability of these models was validated by six compounds that were not included in the training set. Mapping these models back to the topology of the active site of CCR5 leads to a better understanding of antagonist-CCR5 interaction. These results suggest that the 3D model of CCR5 can be used in structure-based drug design and the 3D QSAR models provide clear guidelines and accurate activity predictions for novel antagonist design.  相似文献   

5.
3D QSAR studies on T-type calcium channel blockers using CoMFA and CoMSIA   总被引:1,自引:0,他引:1  
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of isoxazolyl compounds as a potent T-type calcium channel blockers. A set of 24 structurally similar compounds served to establish the model. Four different conformations of the most active compound were used as template structures for the alignment, three of which were obtained from Catalyst pharmacophore modeling and one by using SYBYL random search option. All CoMFA and CoMSIA models gave cross-validated r(2) (q(2)) value of more than 0.5 and conventional r(2) value of more than 0.85. The predictive ability of the models was validated by an external test set of 10 compounds, which gave satisfactory pred r(2) values ranging from 0.577 to 0.866 for all models. Best predictions were obtained with CoMFA std model of Conformer no: 3 alignment (q(2)=0.756, r(2)=0.963), giving predictive r(2) value of 0.866 for the test set. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands accounting for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, hydrophobic and hydrogen bonding fields.  相似文献   

6.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (44 compounds) of diaryloxy-methano-phenanthrene derivatives as potent antitubercular agents. The best predictions were obtained with a CoMFA standard model (q (2)=0.625, r (2)=0.994) and with CoMSIA combined steric, electrostatic, and hydrophobic fields (q (2)=0.486, r (2)=0.986). Both models were validated by a test set of seven compounds and gave satisfactory predictive r (2) values of 0.999 and 0.745, respectively. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands to account for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, and hydrophobic fields. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for further design of phenanthrene-based analogs as anti-TB agents. The resulting contour maps, produced by the best CoMFA and CoMSIA models, were used to identify the structural features relevant to the biological activity in this series of analogs. Further analysis of these interaction-field contour maps also showed a high level of internal consistency. This study suggests that introduction of bulky and highly electronegative groups on the basic amino side chain along with decreasing steric bulk and electronegativity on the phenanthrene ring might be suitable for designing better antitubercular agents.  相似文献   

7.
Thymidine kinase 1 (TK1) is a key target for antiviral and anticancer chemotherapy. Three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques was applied to analyze the phosphorylation capacity of a series of 31 TK1 substrates. The optimal predictive CoMFA model with 26 molecules provided the following values: cross-validated r(2) (q(2))=0.651, non-cross-validated r(2)=0.980, standard error of estimate (s)=0.207, F=129.3. For the optimal CoMSIA model the following values were found: q(2)=0.619, r(2)=0.994, s=0.104, F=372.2. The CoMSIA model includes steric, electrostatic, and hydrogen bond donor fields. The predictive capacity of both models was successfully validated by calculating known phosphorylation rates of five TK1 substrates that were not included in the training set. Contour maps obtained from CoMFA and CoMSIA models correlated with the experimentally developed SAR.  相似文献   

8.
In the present study, we describe a new 3D-QSAR analysis of 42 previously reported thalidomide analogues, with the ability to modulate the pro-inflammatory cytokine TNFalpha, by using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Three statistically significant models were obtained. The best resulting CoMFA and CoMSIA models have conventional r(2) values of 0.996 and 0.983, respectively. The cross-validated q(2) values are 0.869 and 0.868, respectively. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible sites for structural modification of the thalidomide analogues for better activity and reduced toxicity.  相似文献   

9.
Molecular modeling and 3D-QSAR studies were performed on 31 indolomorphinan derivatives to evaluate their antagonistic behaviors on kappa opioid receptor and provide information for further modification of this kind of compounds. Best predictions were obtained with CoMFA standard model (q2 = 0.693, N = 4, r2 = 0.900) and CoMSIA combined model (q2 = 0.617, N = 4, r2 = 0.904). Both models were further validated by an external test set of eight compounds with satisfactory predictions: r2 = 0.607 for CoMFA and r2 = 0.701 for CoMSIA. In addition, the 3D structure of human kappa opioid receptor was constructed based on the crystal structure of bovine rhodopsin, and the CoMSIA contour plots were then mapped into the structural model of kappa opioid receptor-GNTI complex to identify key residues, which might account for kappa antagonist potency and selectivity. The roles of nonconserved Glu297 and conserved Lys227 of human kappa opioid receptor were then discussed.  相似文献   

10.
The three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of falcipain-3 inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. A training set containing 42 molecules served to establish the QSAR models. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients r(cv)(2) (q(2)) of 0.549 and 0.608, and conventional correlation coefficients (r(2)) of 0.976 and 0.932, respectively. An independent test set of 12 molecules validated the external predictive power of both models with predicted correlation coefficients (r(pred)(2)) for CoMFA and CoMSIA as 0.697 and 0.509, respectively. The docking of inhibitors into falcipain-3 active site using GOLD software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of falcipain-3 active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved falcipain-3 inhibitors.  相似文献   

11.
Three-dimensional quantitative structure-activity relationship (QSAR) studies were conducted on two classes of recently explored compounds with known YopH inhibitory activities. Docking studies were employed to position the inhibitors into the YopH active site to determine the probable binding conformation. Good correlations between the predicated binding free energies and the inhibitory activities were found for two subsets of phosphate mimetics: alpha-ketocarboxylic acid and squaric acid (R2=0.70 and 0.68, respectively). The docking results also provided a reliable conformational alignment scheme for 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed based on the docking conformations, giving q2 of 0.734 and 0.754 for CoMFA and CoMSIA models, respectively. The 3D-QSAR models were significantly improved after removal of an outlier (q2=0.829 for CoMFA and q2=0.837 for CoMSIA). The predictive ability of the models was validated using a set of compounds that were not included in the training set. Mapping the 3D-QSAR models to the active site of YopH provides new insight into the protein-inhibitor interactions for this enzyme. These results should be applicable to the prediction of the activities of new YopH inhibitors, as well as providing structural implications for designing potent and selective YopH inhibitors as antiplague agents.  相似文献   

12.
黄酮类醛糖还原酶抑制剂的三维定量构效关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:建立黄酮类化合物抑制剂活性的三维定量构效关系模型,为进一步进行黄酮类醛糖还原酶抑制剂(ARI)的活性与三维结构关系的研究提供重要依据。方法:采用比较分子力场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA),系统研究了75个新型ARI的三维定量构效关系。结果:CoMFA和CoMSIA模型的交互验证相关系数q^2值分别为0.603和0.706、非交互验证相关系数r2值分别为0.956和0.900。结论:CoMFA和CoMSIA模型均具有较强的预测能力,CoMFA和CoMSIA模型的三维等值线图直观地解释了化合物的构效关系,阐明了化合物结构中各位置取代基对黄酮类醛糖还原酶抑制剂活性的影响,为进一步结构优化提供了重要理论依据。  相似文献   

13.
Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r2, q2(loo) and r2(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r2(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.  相似文献   

14.
Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis, and hologram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of 52 training set inhibitors of calf spleen purine nucleoside phosphorylase (PNP). Significant cross-validated correlation coefficients (CoMFA, q(2)=0.68; CoMSIA, q(2)=0.66; and HQSAR, q(2)=0.70) were obtained, indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 16 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results. The final QSAR models along with the information gathered from 3D contour and 2D contribution maps should be useful for the design of novel inhibitors of PNP having improved potency.  相似文献   

15.
Two 3D-QSAR methods--CoMFA and CoMSIA--were applied to a set of 38 angiotensin receptor (AT1) antagonists. The conformation and alignment of molecules were obtained by a novel method - consensus dynamics. The representation of biological activity, partial charge formalism, absolute orientation of the molecules in the grid, and grid spacing were also studied for their effect on the CoMFA models. The models were thoroughly validated through trials using scrambled activities and bootstrapping. The best CoMFA model had a cross-validated correlation coefficient ( q2) of 0.632, which improved with "region focusing" to 0.680. This model had a "predictive" r2 of 0.436 on a test series that was unique and with little representation in the training set. Although the "predictive" r2 of the best CoMSIA model, which included steric, electrostatic, and hydrogen bond acceptor fields was higher than that of the best CoMFA model, the other statistical parameters like q2, r2, F value, and s were unsatisfactory. The contour maps generated using the best CoMFA model were used to identify the structural features important for biological activity in these compounds.  相似文献   

16.
Previously, we have developed 3D-QSAR models of the blood-brain barrier (BBB) choline transporter, a transport system that may have utility as a vector for central nervous system drug delivery. In this study, we extended the model by evaluating five bis-azaaromatic quaternary ammonium compounds for their affinity for the choline binding site on the BBB-choline transporter. The compounds, and their affinities for the transporter, were then incorporated into our existing molecular model, in order to update our knowledge on the molecular recognition factors associated with interaction of ligands at the choline binding site. The current compounds are structurally related to previous substrates that we have evaluated, but offer additional three dimensional aspects compared to the series of compounds previously utilized to define the original models. The compounds showed good affinity for the BBB-choline transporter, exhibiting inhibition constants ranging from 10 to 68 microM, as determined by the in situ rat brain perfusion method. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods were used to build the new 3D QSAR models. When the new bis-azaaromatic quaternary ammonium compounds were included in the model, the best cross-validated CoMFA q2 was found to be 0.536 and the non-cross-validated r2 was 0.818. CoMSIA hydrophobic cross-validated q2 was 0.506 and the non-cross-validated r2 was 0.804. This new model was able to better predict BBB-choline transporter affinity of hemicholinium-3 (predicted 65 microM, actual 54 microM), when compared to an earlier model (predicted 316 microM).  相似文献   

17.
Phosphodiesterase superfamily is the key regulator of 3',5'-cyclic guanosine monophosphate (cGMP) decomposition in human body. Phosphodiesterase-5 (PDE-5) inhibitors, sildenafil, vardenafil and tadalafil, are well known oral treatment for males with erectile dysfunction. To investigate the inhibitory effects of traditional Chinese medicine (TCM) compounds to PDE-5, we performed both ligand-based and structure-based studies on this topic. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted to construct three dimensional quantitative structure-activity relationship (3D-QSAR) models of series of known PDE-5 inhibitors. The predictive models had cross-validated, q(2), and non cross-validated coefficient, r(2), values of 0.791 and 0.948 for CoMFA and 0.724 and 0.908 for CoMSIA. These two 3D-QSAR models were used to predict activity of TCM compounds. Docking simulations were performed to further analyze the binding mode of training set and TCM compounds. A putative binding model was proposed based on CoMFA and CoMSIA contour maps and docking simulations; formation of pi-stacking, water bridge and specific hydrogen bonding were deemed important interactions between ligands and PDE-5. Of our TCM compounds, engeletin, satisfied our binding model, and hence, emerged as PDE-5 inhibitor candidate. Using this study as an example, we demonstrated that docking should be conducted for qualitative purposes, such as identifying protein characteristics, rather than for quantitative analyses that rank compound efficacy based on results of scoring functions. Prediction of compound activity should be reserved for QSAR analyses, and scoring functions and docking scores should be used for preliminary screening of TCM database (http://tcm.cmu.edu.tw/index.php).  相似文献   

18.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was performed on a series of indole/benzoimidazole-5-carboxamidines as urokinase plasminogen activator (uPA) inhibitors. The ligand molecular superimposition on template structure was performed by atom/shape-based RMS fit, multifit, and RMSD fit methods. The removal of two outliers from the initial training set of 30 molecules improved the predictivity of the models. The statistically significant model was established from 28 molecules, which were validated by evaluation of test set of nine compounds. The atom-based RMS alignment yielded best predictive CoMFA model (r2(cv) = 0.611, r2(cnv) = 0.778, F value = 43.825, r2(bs) = 0.842, r2(pred) = 0.616 with two components) while the CoMSIA model yielded (r2(cv) = 0.499, r2(cnv) = 0.976, F value=96.36, r2(bs) = 0.993, r2(pred) = 0.694 with eight components). The contour maps obtained from 3D-QSAR studies were appraised for the activity trends of the molecules analyzed. The results indicate that the steric, electrostatic, and hydrogen bond donor/acceptor substituents play significant role in uPA activity and selectivity of these compounds. The data generated from the present study can be used as putative pharmacophore in the design of novel, potent, and selective urokinase plasminogen activator inhibitors as cancer therapeutics.  相似文献   

19.
The blood-brain barrier choline transporter may have utility as a drug delivery vector to the central nervous system. Surprisingly, this transporter has as yet not been cloned and expressed. We therefore initiated a 3D-QSAR study to develop predictive models for compound binding and identify structural features important for binding to this transporter. In vivo experimental data were obtained from in situ rat brain perfusion studies. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods were used to build the models. The best cross-validated CoMFA q(2) was found to be 0.47 and the non-cross-validated r(2) was 0.95. CoMSIA hydrophobic cross-validated q(2) was 0.37 and the non-cross-validated r(2) was 0.85. These models rendered a useful approximation for binding requirements in the BBB-choline transporter and, until such time as the cloned transporter becomes available, may have significant utility in developing a predictive model for the rational design of drugs targeted to the brain.  相似文献   

20.
Phenoloxidase (PO), also known as tyrosinase, is a key enzyme in insect development, responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. Inhibition of PO may provide a basis for novel environmentally friendly insecticides. In the present study, we determined the inhibitory activities and IC50 values of 57 compounds belonging to the benzaldehyde thiosemicarbazone, benzaldehyde, and benzoic acid families against phenoloxidase from Pieris rapae (Lepidoptera) larvae. In addition, the inhibitory kinetics of 4-butylbenzaldehyde thiosemicarbazone against PO was measured in air-saturated solutions for the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA). The results indicated that the compound is a reversible noncompetitive inhibitor. The bioactivity results were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using two molecular field analysis techniques: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). After carrying out superimposition using common substructure-based alignment, robust and predictive 3D-QSAR models were obtained from CoMFA (q2=0.926, r2=0.986) and CoMSIA (q2=0.933, r2=0.984) with six optimum components. The 3D-QSAR model built here will provide hints for the design of novel PO inhibitors. The molecular interactions between the ligands and the target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the representative compound 4-butylbenzaldehyde thiosemicarbazone and the active site was elucidated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号