首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maltotriose is metabolized by baker’s and brewer’s yeast only oxidatively, with a respiratory quotient of 1.0, the being, depending on the strain used, 0–11, as compared with of 6–42μL CO2 per h per mg dry substance. The transport appeared to proceed by facilitated diffusion (no effects of NaF, iodoacetamide and 3-chlorophenylhydrazonomalononitrile) with a KT of more than 50mm and was inhibited by maltose > maltotriose > methyl-α-D-glucoside > maltotetraose >D-fruetose >D-glucose. The transport was present constitutively in bothSaccharomyces cerevisiae (baker’s yeast) and inS. uvarum (brewer’s yeast) and it was not significantly stimulated by preincubation with glucose or maltose. The pH optimum was 4.5–5.5, the temperature dependence yielded an activation energy of 26 kJ/mol.  相似文献   

2.
3.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

4.
Joshua Rosenau 《Evolution》2012,5(4):582-584
Exploring life??s diversity and geography??s effect on it was central to Darwin and Wallace??s parallel discoveries of evolution. Those discoveries required the two to overcome their own misconceptions about species and biology. By helping students to see the world through the eyes of explorers and placing life??s diversity into a geographic context, teachers can help students overcome those same barriers to the acceptance of evolution and deepen students?? appreciation of biodiversity.  相似文献   

5.
Retinal neurodegeneration and visual dysfunctions have been reported in a majority of Alzheimer’s and Parkinson’s patients, and, in light of the quest for novel biomarkers for these neurodegenerative proteinopathies, the retina has been receiving increasing attention as an organ for diagnosing, monitoring, and understanding disease. Thinning of retinal layers, abnormalities in vasculature, and protein deposition can be imaged at unprecedented resolution, which offers a unique systems biology view on the cellular and molecular changes underlying these pathologies. It makes the retina not only a promising target for biomarker development, but it also suggests that novel fundamental insights into the pathophysiology of Alzheimer’s and Parkinson’s disease can be obtained by studying the retina–brain axis.  相似文献   

6.
Alzheimer’s disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein (“plaques”) and by insoluble filaments composed of hyperphosphorylated tau protein (“tangles”). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.Alzheimer’s disease (AD) is a common neurodegenerative disease of the elderly, first described by the physician-pathologist Alois Alzheimer in 1907 (Maurer and Maurer 2003). Clinically, AD is characterized by progressive impairment of memory (particularly short-term memory in early stages) and other cognitive disabilities, personality changes, and ultimately, complete dependence on others. The most prevalent cause of dementia worldwide, AD afflicts >5 million people in the United States and >25 million globally (Alzheimer’s Association, http://www.alz.org). Age is the most important risk factor, with the prevalence of AD rising exponentially after 65 (Blennow et al. 2006). However, many cases of so-called AD above 80 yr of age may result from a combination of pathological dementia processes (Fotuhi et al. 2009). The apolipoprotein E (ApoE) gene is the most important genetic susceptibility factor for AD, with the relatively common ApoE4 allele (prevalence ∼16%) increasing the risk for AD threefold to fourfold in heterozygous dose (Kim et al. 2009).The histopathological hallmarks of AD are amyloid plaques (extracellular deposits consisting largely of aggregated amyloid beta [Aβ] peptide that are typically surrounded by neurons with dystrophic neurites) and neurofibrillary tangles (NFTs, intracellular filamentous aggregates of hyperphosphorylated tau, a microtubule-binding protein) (Blennow et al. 2006). The development of amyloid plaques typically precedes clinically significant symptoms by at least 10–15 yr. Amyloid plaques are found in a minority of nondemented elderly patients, who may represent a “presymptomatic” AD population. As AD progresses, cognitive function worsens, synapse loss and neuronal cell death become prominent, and there is substantial reduction in brain volume, especially in the entorhinal cortex and hippocampus. The best correlation between dementia and histopathological changes is observed with neurofibrillary tangles, whereas the relationship between the density of amyloid plaques and loss of cognition is weaker (Braak and Braak 1990; Nagy et al. 1995). In addition to amyloid plaques and neurofibrillary tangles, many AD cases exhibit widespread Lewy body pathology. (Lewy bodies are intracellular inclusion bodies that contain aggregates of α-synuclein and other proteins.) Particularly in very old patients, considerable overlap between AD, frontotemporal dementia, Lewy body dementia, and vascular disease is observed, and pure AD may be rare (Fotuhi et al. 2009).  相似文献   

7.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD.  相似文献   

8.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson’s disease (PD). The substantia nigra pars compacta—the area where the primary pathological lesion is located—is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral neurons highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neuro-degenerative disorder.  相似文献   

9.
10.
11.
12.
13.
The past 25 years have seen significant advances in understanding the diversity and functions of glycoprotein glycans in Drosophila melanogaster. Genetic screens have captured mutations that reveal important biological activities modulated by glycans, including protein folding and trafficking, as well as cell signaling, tissue morphogenesis, fertility, and viability. Many of these glycan functions have parallels in vertebrate development and disease, providing increasing opportunities to dissect pathologic mechanisms using Drosophila genetics. Advances in the sensitivity of structural analytic techniques have allowed the glycan profiles of wild-type and mutant tissues to be assessed, revealing novel glycan structures that may be functionally analogous to vertebrate glycans. This review describes a selected set of recent advances in understanding the functions of N-linked and O-linked (non-glycosaminoglycan) glycoprotein glycans in Drosophila with emphasis on their relatedness to vertebrate organisms.  相似文献   

14.
Matrix metalloproteinases (MMPs) and oxidative stress have been implicated in neurological diseases such as Alzheimer’s disease (AD). Plasma MMP-2 and MMP-9 activities were assessed in Mild Cognitive Impairment (MCI) and AD subjects compared with aged-matched controls, and subsequently analysed in relation to oxidative stress markers. Both MMP-2 and MMP-9 showed no significant changes versus control subjects. Plasma glutathione peroxidase Se-dependent (GPx-Se) activity and malondialdehyde (MDA) levels were higher in AD than in controls (< 0.05), suggesting a role for GPx-Se in controlling oxidative stress in AD. Negative correlations were observed between MMPs and MDA in AD and MCI patients (P < 0.05). In conclusion, oxidative stress events did not include activation of MMPs and this similar pattern in AD and MCI suggests that both are biochemically equivalent.  相似文献   

15.
16.
17.
Researchers commonly use long-term average production inequalities to characterize cross-cultural patterns in foraging divisions of labor, but little is known about how the strategies of individuals shape such inequalities. Here, we explore the factors that lead to daily variation in how much men produce relative to women among Martu, contemporary foragers of the Western Desert of Australia. We analyze variation in foraging decisions on temporary foraging camps and find that the percentage of total camp production provided by each gender varies primarily as a function of men’s average bout successes with large, mobile prey. When men target large prey, either their success leads to a large proportional contribution to the daily harvest, or their failure results in no contribution. When both men and women target small reliable prey, production inequalities by gender are minimized. These results suggest that production inequalities among Martu emerge from stochastic variation in men’s foraging success on large prey measured against the backdrop of women’s consistent production of small, low-variance resources.
Douglas W. BirdEmail:

Rebecca Bliege Bird   received her Ph.D. from UC Davis in 1996. She is interested in gendered strategies of social and economic production, especially as they relate to altruism and public goods provisioning in prestige competitions. In pursuit of these and other questions related to the socioecology of subsistence, she has worked in Torres Strait among the Meriam and is currently working with Martu in Australia’s Western Desert. Brian F. Codding   received his B.S. from California Polytechnic State University, San Luis Obispo in 2005 and his M.A. in 2008 from Stanford University, where he is currently a Ph.D. student in the Department of Anthropology. His current research examines the social ecology of gender-specific foraging in archaeological and ethnographic contexts in California and Western Australia. Douglas W. Bird   received his Ph.D. from UC Davis in 1996. His interest in ethnoarchaeology led him to explore the processes of shellmidden formation among Meriam of the Torres Strait. He is currently investigating the politics of hunting among Martu and the way that sharing can, paradoxically, create social hierarchy.  相似文献   

18.
In a stable state children with Asperger’s and Kanner’s syndromes demonstrate a similar decrease in plasma norepinephrine. In the aggravated state, these changes become more expressed and are characterized by a decrease in plasma tyrosine, norepinephrine, normetanephrine, and by an increase in dopamine and homovanillic acid and a decrease in excretion of norepinephrine and an increase in excretion of homovanillic acid, epinephrine and 3-methoxy-4-hydroxyphenylglycol (MHPG). In the aggravated state children with Kanner’s syndrome were characterized by increased plasma MHPG, decreased excretion of tyrosine and increased expression of normetanephrine. The observed imbalance in dopamine and epinephrine/norepinephrine systems suggests importance of combined analysis of changes in catecholamines and their metabolites as the most informative approach in the study of the effect of autistic disorders.  相似文献   

19.
Prion disease research has opened up the “black-box” of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrPC, is converted to a disease-associated, β-sheet enriched isoform called PrPSc. In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target,1 but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrPSc in prion diseases.2,3 Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions,4 and, with a neuron-to-neuron ‘spreading’ also reported for pathologic forms of other misfolded proteins, Tau5,6 and α-synuclein in the case of Parkinson Disease.7,8 The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of “prionoids”9, and lies outside the scope of this particular review where we will focus upon PrPC. From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrPC,10 (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrPC (Fig. 1) (3) similar lipid raft environments for PrPC and APP processing machinery,11-13 and perhaps in consequence, overlaps in repertoire of the PrPC and APP protein interactors (“interactomes”),14,15 and (4) rare kindreds with mixed AD and prion pathologies.16 Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.  相似文献   

20.
《朊病毒》2013,7(4):359-363
Prion disease research has opened up the “black-box” of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrPC, is converted to a disease-associated, β-sheet enriched isoform called PrPSc. In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target,1 but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrPSc in prion diseases.2,3 Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions,4 and, with a neuron-to-neuron ‘spreading’ also reported for pathologic forms of other misfolded proteins, Tau5,6 and α-synuclein in the case of Parkinson Disease.7,8 The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of “prionoids”9, and lies outside the scope of this particular review where we will focus upon PrPC. From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrPC,10 (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrPC (Fig. 1) (3) similar lipid raft environments for PrPC and APP processing machinery,11-13 and perhaps in consequence, overlaps in repertoire of the PrPC and APP protein interactors (“interactomes”),14,15 and (4) rare kindreds with mixed AD and prion pathologies.16 Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号