共查询到20条相似文献,搜索用时 0 毫秒
1.
With the aim to improve the performance of enzyme bound to hydrophilic solid phases, their immobilization with polyethylene glycol (PEG) tether have been studied. Sweet potato β-amylase, which hydrolyses the high molecular weight substrate starch and β-galactosidase, which acts on low molecular weight substrates, were used as model enzymes and beaded thiol–agarose as solid phase. Several two step methods for the introduction of the tether using a bis-oxirane homobifunctional PEG as well as a heterobifunctional derivative with a hydroxysuccinimide ester and a maleimide group have been evaluated. Amino groups, native and de novo thiol groups in the enzymes were utilized for immobilization. The best approach was found to be to first introduce the PEG derivative via one of its reactive groups to the enzyme. Subsequently the formed conjugate was bound to the solid phase by the remaining reactive group. Attempts to first introduce the PEG tether into the solid phase were not successful. A high degree of substitution with PEG chains on the enzyme leads to high immobilization yields for both β-amylase and β-galactosidase, but relatively lower gel-bound activity for the former enzyme which is acting on a high molecular weight substrate and thus more sensitive for steric shielding effects. With optimal degree of PEG substitution (which occurred at five times molar excess of the heterobifunctional reagent) the gel-bound activity of β-amylase was increased from 12% (for the derivative without tether) to 31%. 相似文献
2.
Production of β-glycosidases: β-xylosidase and β-glucosidase by the fungus Sclerotinia sclerotiorum was optimized in the presence of different carbon sources. Immobilization supports with different physico-chemical characteristics were evaluated for use in continuous reactors. Immobilization and activity yields were calculated. Among the adsorption on Duolite, Amberlite, Celite and DEAE-sepharose, and entrapment in polyacrylamide gel or reticulation using glutaraldehyde, highest yields were obtained when β-xylosidase was adsorbed on Duolite A 7 and when β-glucosidase was adsorbed on DEAE-sepharose. Enzyme preparations from S. sclerotiorum cultures were used in a biphasic (alcohol/aqueous) medium for the synthesis of alkyl-glycosides by trans-glycosylation of sugars and long-chain alcohols. The synthesis was studied under different conditions with primary and secondary alcohols as substrates, in the presence of free or immobilized enzyme. Xylan and cellobiose were used for the synthesis of alkyl-xylosides and alkyl-glucosides, respectively. The majority of the immobilized preparations were unable to catalyze the synthesis of alkyl-glycosides. Highest yields were obtained when using xylan and C4–C6-alcohols. The reaction produced alkyl-β-xyloside and alkyl-β-xylobioside, as confirmed by MS/MS. Up to 22 mM iso-amyl-xyloside and 14 mM iso-amyl-xylobioside were produced from iso-amyl alcohol and xylan. 相似文献
3.
Chloroperoxidase (CPO) from Caldariomyces fumago was optimally covalently immobilized on chitosan membranes pretreated with 0.8 M glutaraldehyde at pH 3.5 to give 3.18 mg
CPO g −1 support. Using monochlorodimedone (MCD) as assay substrate, the immobilized-CPO retained 40% activity at 50°C after 40 min
whereas free CPO retained only 0.02%. The residual activity for immobilized-CPO was 99 and 58% compared with 68 and 43% for
free CPO in the presence of 1.5 M urea and 300 μM H 2O 2, respectively, after 20 h. 相似文献
4.
The equilibrium and kinetics of adsorption of reactive dye RR222 and Cu 2+, and the activity of immobilization of acid phosphatase, on highly swollen chitosan beads were examined at 30°C. The chitosan was prepared from shrimp shell wastes and was cross-linked with different dosages of glutaraldehyde or glyoxal (100–80,000 mg/l). It was shown that the amounts of solute adsorption and the immobilization capacity of acid phosphatase on cross-linked chitosan beads were substantially affected by their degree of cross-linking. The cross-linking rate of chitosan with glutaraldehyde could be described by a pseudo-second-order equation and the cross-linking equilibrium by the Freundlich equation. This provided an experimental method to control the degree of cross-linking of chitosan beads. Finally, the activity and lifetime of the immobilized enzyme were measured to evaluate the application potential. 相似文献
5.
Response surface methodology (RSM) and centre composite design (CCD) were used to optimize immobilization of β-galactosidase (BGAL) from Pisum sativum onto two matrices: Sephadex G-75 and chitosan beads. The immobilization efficiency of 75.66% and 75.19% were achieved with Sephadex G-75 and chitosan, respectively. There was broad divergence in physico-chemical properties of Sephadex- PsBGAL and chitosan- PsBGAL. Chitosan- PsBGAL was better suited for industrial application based on its broad pH and temperature optima, higher temperature stability, reusability etc. Sephadex- PsBGAL and chitosan- PsBGAL showed much variation in their catalytic properties with respect to soluble enzyme. About 50% loss in activity of Sephadex- PsBGAL and chitosan- PsBGAL were observed after 12 and 46 days at 4 °C, respectively. Chitosan- PsBGAL showed higher rate of lactose hydrolysis present in milk and whey at room temperature and 4 °C than Sephadex- PsBGAL. In both cases, lactose of milk whey was hydrolyzed at higher rate than that of milk. 相似文献
6.
β-chitin and its chitosan from the pens of Loligo lessoniana and Loligo formosana has been isolated, prepared, and physico-chemically characterized to demonstrate a potential chitin source. Without deminerization due to negligible ash content, only deproteinization was used in the chitin isolation with an yield of 35–38%, without significant difference either between the two species or the collection seasons. Reducing step not only saves production cost but also obviates acid pollutant. Mild alkaline deacetylation with various time periods was employed in the chitosan preparation. Optical rotation and thermal transition of chitin from both species suggested the weak intermolecular forces compared with shrimp chitin. The results of nitrogen contents indicate the effectiveness of the deproteinization method used. The samples were categorized as a Class III: moderate hygroscopicity. Traces of elements presented in pens markedly decreases but are incapable to be got rid of within the step of chitin–chitosan preparation. In addition, a small amount of cadmium, as the contamination, was detected in the samples from L. formosana. 相似文献
7.
Neutral β-galactosidases (from E. coli and K. lactis) were bound to glutaraldehyde-agarose (Glut-agarose) through amino groups, and to thiolsulfinate-agarose (TSI-agarose) through thiol groups. In general, TSI-gels exhibited higher yields after immobilization (60–85%) than Glut-gels (36–40%). The kinetic parameters of the enzymes bound to TSI-gels (particularly those with lower concentration of active groups) were less affected than those of the Glut-gels. This might indicate that the binding to TSI-agarose is more conservative of the protein conformation. However, the Glut-derivatives exhibited in general better thermal and solvent stabilities than TSI-derivatives. The stability of the derivatives was studied in the presence of ethanol, dioxane and acetone (18% v/v). The stabilization of the immobilized enzymes, for some of the solvents assayed, was evidenced by the existence of final very stable enzyme states with high residual activities, thus allowing the utilization of the derivatives in the presence of organic cosolvents. 相似文献
8.
The catalytic behaviour under isothermal conditions of two different membranes loaded with β-galactosidase was investigated. One membrane (M 1) was constituted by a nylon sheet grafted with methylmethacrylate by means of chemical grafting. The other, (M 2), was prepared by a double chemical grafting: the first one with styrene (Sty) and the second one with methylmethacrylate. Membrane activity was characterized as a function of temperature, pH and substrate concentration. The role of Sty in increasing membrane hydrophobicity has been discussed. Membrane M 2 was found to be better suited for employment in non-isothermal bioreactors. 相似文献
9.
Lactose hydrolysis by β-galactosidase immobilized on two nylon membranes, differently grafted, has been studied in a bioreactor operating under isothermal and non-isothermal conditions. One membrane (M 1) was obtained by chemical grafting of methylmethacrylate (MAA); the other one (M 2) by a double chemical grafting: styrene (Sty) and MAA. Hexamethylenediamine was used as a spacer between the grafted membranes and the enzyme. Both membranes have been physically characterized studying their permeabilities in presence of pressure or temperature gradients. Under non-isothermal conditions, the increase in activity of membrane M 2 was higher than that of membrane M 1. The and β coefficients, giving the percentage of activity increase when a temperature difference of 1°C is applied across the catalytic membranes, have been calculated. Results have been discussed with reference to the greater hydrophobicity of membrane M 2 with respect to membrane M 1, the hydrophobicity being a prerequisite for the occurrence of the process of thermodialysis. 相似文献
10.
The effect of the microenvironment and immobilization method on the activity of immobilized β-galactosidase was investigated. Immobilization was done on Teflon membranes grafted with different acrylic monomers by γ-radiation and activated by two different coupling agents through the functional groups of the grafted monomers. 2-Hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) were grafted on the membrane, and 1,6-hexamethylenediamine (HMDA) was used as a spacer. Glutaraldehyde or cyanuric chloride were used as coupling agents to bind the enzyme to the membrane. Four different catalytic membranes were obtained using the same solid support. Direct comparison between the isothermal behaviour of the biocatalyst in its free and immobilized form was carried out. In particular the dependence of the isothermal activity on the temperature and pH was studied and the kinetic parameters determined. The influence of the microenvironment on the observed activity of the four membranes was evidenced and discussed. The way of improving the yield of these catalytic membranes is discussed also. 相似文献
11.
Mesoporous silica particles are used as support material for immobilization of enzymes. Here we investigated a fluorescence-based assay for real-time monitoring of the immobilization of lipase, bovine serum albumin, and glucose oxidase into micrometer-sized mesoporous silica particles. The proteins are labeled with the dye epicocconone, and the interaction with the particles is observed as an increase in emission intensity of the protein–dye conjugates that can be quantified if correcting for a comparatively slow photobleaching. The immobilization occurs in tens of minutes to hours depending on particle concentration and type of protein. In the limit of excess particles over proteins, the formation of the particle–protein complexes can be described by a single exponential growth for all three investigated proteins, and the fitted pseudo-first-order rate constant increases linearly with particle concentration for each protein type. The derived second-order rate constant k varies with the protein hydrodynamic radius according to k ∼ RH−4.70±0.01, indicating that the rate-limiting step at high particle concentrations is not the diffusional encounter between proteins and particles but rather the entry into the pores, consistent with the hydrodynamic radii of the three proteins being smaller but comparable to the pore radius of the particles. 相似文献
12.
Chitosan of 24% degree of acetylation was depolymerized by a mixture of cellulase, alpha amylase, and proteinase to give the title oligosaccharides. The removal of products by membrane separation permitted yield maximization of products having degree of polymerization in the 3–10 range. 相似文献
13.
Glutaraldehyde cross-linked chitosan microspheres were prepared for controlled release of centchroman, a nonsteroidal contraceptive. The cross-linked microspheres with low-molecular-weight (LMW) chitosan (260 kg mol(-1)) have shown maximum degree of swelling (287 wt%) but were found to be poor in loading and release behavior for centchroman. The microspheres with medium-molecular-weight (MMW) chitosan (1134 kg mol(-1)) have shown 250 wt% degree of swelling and 37.5 wt% loading of centchroman, but microspheres with high-molecular-weight (HMW) chitosan (2224 kg mol(-1)) have shown a low degree of swelling (150 wt%) and centchroman loading (30 wt%). The microspheres with MMW chitosan have released 82 wt% of loaded centchroman in a controlled release manner within a period of 70 h in comparison to low- (260 kg mol(-1)) and high-MW (2224 kg mol(-1)) chitosan microspheres. The chitosan microspheres with 62 wt% degree of deacetylation (DDA) were more efficient in the controlled release of centchroman in comparison to chitosan microspheres with low (48 wt%) and high-DDA (75 wt%). The fractional release of centchroman (M(t)/M(infinity)) from chitosan microspheres was used to predict the mechanism of drug release and to determine the diffusion constant (D) of centchroman. 相似文献
14.
Bovine liver catalase was immobilized into chitosan beads prepared in crosslinking solution. Various characteristics of immobilized catalase such as the pH–activity curve, the temperature–activity curve, thermal stability, operational stability, and storage stability were evaluated. Among them the pH optimum and temperature optimum of free and immobilized catalase were found to be pH 7.0 and 35 °C. The Km value of immobilized catalase (77.5 mM) was higher than that of free enzyme (35 mM). Immobilization decreased in Vmax value from 32,000 to 122 μmol (min mg protein) −1. It was observed that operational, thermal and storage stabilities of the enzyme were increased with immobilization. 相似文献
15.
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。 相似文献
16.
Membranes of chitosan (QS), chitosan treated with glutaraldehyde (QGA) and chitosan crown ether (QCE) were utilized as carriers for immobilization of Candida antarctica and Candida rugosa lipases. Membrane supports were characterized by several techniques (Raman spectroscopy, elemental analysis by CHN determination and Energy Dispersive X-ray (EDX), water sorption isotherms, and surface area from nitrogen sorption data). To verify the presence of enzymes, some of these techniques were also used for lipase on chitosan biocatalytic systems. Measurements of protein load from Biuret assays and catalytic activity in esterification in nonaqueous media were also made for the immobilized enzymes. Sorption isotherms at 20, 30, 40 and 50 °C for QS, QGA and QCE supports were fitted to the Guggenheim, Anderson and Böer model. GAB monolayer moisture parameter, Xm, varied between 0.029 and 0.051 for QS, 0.039 and 0.058 for QGA and 0.039–0.075 g of water g −1 s.s. for QCE membranes. Elemental analysis and Raman spectra measurements of the lipase, supports and immobilized lipase systems gave evidence of the presence of enzymes on supports. Chitosan supports with internal surface area (m2 g −1) among 3.31 and 1.26 were obtained. Regardless of these low values, acceptable protein load (0.61 to 3.21%) and esterification initial rates were achieved (0.88–2.75 mmol min −1 g of protein −1). 相似文献
17.
AbstractThree new, water-soluble, N-modified chitosan derivatives containing poly(ethylene glycol), dextran or inulin side chains were used as spacers for enzyme immobilization on a natural silk carrier. Amylolytic enzymes Maltogenase L and Promozyme D2, lipolytic enzyme Resinase HT and a complex of proteolytic enzymes from Streptomyces flavus 197 were immobilized. The activity of the immobilized enzymes and their stability during storage were similar to that obtained with synthetic polyamine—poly(ethylene imine) as a spacer. High operational stability of co-immobilized amylolytic enzymes Maltogenase L and Promozyme D2 in a continuous flow mini-reactor was demonstrated. 相似文献
18.
We immobilize α-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme’s activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems (μ-TAS). 相似文献
19.
The use of charged peptides fused to enzymes for immobilization onto ion-exchange membranes was explored for the enzyme x-galactosidase. The additional charged peptides, containing 1, 5, 11, and 16 aspartates, fused to x-galactosidase, for the most part did not interfere with the kinetic behavior for lactose hydrolysis. There was a 2-fold decline in V(m) for the 16-aspartate fusion, but the others were quite similar to the wild type enzyme (BGWT). BGWT and the fusions all retained approximately 50% of their activities when adsorbed onto ion-exchange membranes. In contrast to BGWT, the enhanced binding strength of the 11 aspartate fusion provided the ability to hydrolyze whey permeate at 0.3 M ionic strength without enzyme leakage, and to immobilize the enzyme directly from diluted cell extract with 83% purity. (c) 1994 John Wiley & Sons, Inc. 相似文献
20.
Whole cells of alkaliphilic Bacillus pseudofirmus AR-199, induced for β-galactosidase activity, were used for the synthesis of 1-hexyl-β-
-galactoside and 1-octyl-β-
-galactoside, respectively, by transglycosylation reaction between lactose and the corresponding alcohol acceptor. The product yield was strongly influenced by the initial water content in the reaction mixture. Water content of 10% (v/v) was optimal providing 3.6–36 mM hexyl galactoside from 10 to 150 mM lactose, and no secondary product hydrolysis. Product yield could be enhanced by supplementing the reaction mixture with more cells or partly replacing the product with fresh substrate, but was decreased with time to the initial equilibrium level. Cell permeabilisation or disruption resulted in increased reaction rate and higher product yield but was followed by product hydrolysis. Octyl galactoside synthesis using whole cells was optimal at water content of 2% (v/v) with a yield of 26%. The cells were immobilised in cryogels of polyvinyl alcohol for use in continuous process, where hexyl galactoside was produced with a constant yield of 50% from 50 mM lactose for at least a week. 相似文献
|