首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A regenerating reaction combined with the use of native malate dehydrogenase, native diaphorase, methylviologen, NAD, oxalacetic acid as the substrate and lipoamide as a stabilizer was carried out in the presence of electrolysis. Consequently, malic acid was efficiently produced from oxalacetic acid in the regenerating reaction. A glassy carbon bead electrode was used as a cathode. Twenty four milliamperes were passed at a rotation speed of 500 rpm, 29.8 +/- 0.3 degrees C and -1.0 V. It was found that lipoamide has a stabilizing effect on malate dehydrogenase and diaphorase. Low concentration (50 muM) of NAD was also effective for the stabilization of malate dehydrogenase. NADH regeneration activity based on malic acid production rate was 4.7 U/mg of the enzyme protein of the commercial diaphorase preparation. The current efficiency was more than 74%, compared with the theoretical yield, in the presence of enough oxalacetic acid.  相似文献   

2.
The flavoprotein lipoamide dehydrogenase was purified, by an improved method, from commercial baker's yeast about 700-fold to apparent homogeneity with 50-80% yield. The enzyme had a specific activity of 730-900 U/mg (about twice the value of preparations described previously). The holoenzyme, but not the apoenzyme, possessed very high stability against proteolysis, heat, and urea treatment and could be reassociated, with fair yield, with the other components of yeast pyruvate dehydrogenase complex to give the active multienzyme complex. The apoenzyme was reactivated when incubated with FAD but not FMN. As other lipoamide dehydrogenases, the yeast enzyme was found to possess diaphorase activity catalysing the oxidation of NADH with various artificial electron acceptors. Km values were 0.48 mM for dihydrolipoamide and 0.15 mM for NAD. NADH was a competitive inhibitor with respect to NAD (Ki 31 microM). The native enzyme (Mr 117000) was composed of two apparently identical subunits (Mr 56000), each containing 0.96 FAD residues and one cystine bridge. The amino acid composition differed from bacterial and mammalian lipoamide dehydrogenases with respect to the content of Asx, Glx, Gly, Val, and Cys. The lipoamide dehydrogenases of baker's and brewer's yeast were immunologically identical but no cross-reaction with mammalian lipoamide dehydrogenases was found.  相似文献   

3.
Lipoamide dehydrogenase (NADH:lipoamide oxidoreductase, EC 1.6.4.3) isolate from pig heart and Escherichia coli was covalently coupled by both diazonium and amide bonds to controlled pore glass beads (96% silica). When the enzyme was immobilized in the presence of NAD+, the enzyme no longer exhibited its normal requirement for NAD+ for full activity. If the immobilized enzyme was then treated with NADase, the requirement for NAD+ was restored. Enzyme immobilized in the absence of NAD+ exhibited normal NAD+ dependence both prior to an after NADase treatment. These results are discussed in terms of co-immobilization of NAD+ at or near the allosteric site of the enzyme.  相似文献   

4.
Dihydrolipoyl dehydrogenase from bovine kidney catalyzes NAD-linked redox reaction of lipoamide. Hates of the catalyzed reaction were studied in both directions. Saturation curves for NAD and lipoamide are nonhyperbolic, suggesting homotropic cooperative interactions of these substrates with the enzyme. The cooperative effect was analyzed by Hill plots according to the diagnostic procedure of Levitzki and Koshland. Dihydrolipoyl dehydrogenase is subject to homotropic regulation in which NAD acts as a negative cooperative effector, whereas lipoamide acts as a positive cooperative effector. At high concentrations, dihydrolipoamide normalizes the saturation curve of NAD, while NADH tends to enhance the cooperative interaction of lipoamide with the enzyme.  相似文献   

5.
Formate dehydrogenase (EC 1.2.1.2) prepared from peas (Pisum sativum) was a two-subunit enzyme. The enzyme accelerated the formation of an NAD+-cyanide compound having an adsorption band at 330 nm. The enzyme was able to bind one NAD+ molecule per each subunit but only 1 mole of NAD+-cyanide compound was formed per two subunits. The complex of NAD+, cyanide, and the enzyme was very stable and had no catalytic activity. Azide inhibited the formate dehydrogenase reaction in two different ways. By incubation of the enzyme with azide in the presence of NAD+, half of its catalytic activity was lost. The remaining activity was also inhibited by azide but this inhibition was removed competively by formate. Contrary to the case of cyanide the inhibition by azide could be removed by dialysis and no spectral species due to the addition compound of NAD+ and azide could be observed. The data from double recipricol plots of the initial velocity and the formate concentration led to a conclusion that formate dehydrogenase has two sites with about equal catalytic activity. The Km for formate was different for the two catalytic sites (1.67 and 6.25 mM) but the difference was not noticeable in the case of the Km for NAD+.  相似文献   

6.
The effect of NAD+ on lipoamide dehydrogenase from pig heart was investigated physicochemically. The observed and theoretical oxidation-reduction mid-point potentials for the oxidized lipoamide dehydrogenase (E)/two-electron-reduced lipoamide dehydrogenase (EH2) couple in the presence on NAD+ were -218 mV and -251 mV, respectively, at pH 6.0. Therefore, unexpectedly the mid-point potential of the enzyme became more positive on NAD+ binding. Decreases in the fluorescence lifetime and intensity and increase in the degree of polarization of enzyme-bound FAD were observed in the presence of NAD+. Fluorescence quenching of bound FAD by NAD+ was released by phenobarbital. The results suggest that NAD+ strengthens the intramolecular dynamic interaction between the isoalloxazine moiety and adenine moiety of bound FAD, and so alters the mid-point potential of the enzyme. These findings indicate that NAD+ acts not only as an acceptor of electrons from EH2, but also as an effector in the flavin-disulfide interaction of EH2.  相似文献   

7.
In the present study, we investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on lipoamide dehydrogenase activity and metallothionein content. Lipoamide dehydrogenase is a flavoprotein enzyme, which reduces lipoamide and low molecular weight thiols. This enzyme has also been involved in the conversion of ubiquinone (coenzyme Q-10, oxidized form) to ubiquinol (reduced form). Lipoamide dehydrogenase activity was measured spectrophotometrically following its incubation with different doses of MPTP, MPP+, and divalent metals. MPTP at higher concentrations inhibited the lipoamide dehydrogenase activity, whereas it’s potent toxic metabolite 1-methyl-4-phenylpyridinium (MPP+) had a similar effect at lower concentration. Calcium and copper did not affect the enzyme activity at any of the doses tested, whereas, zinc dose dependently enhanced the lipoamide dehydrogenase activity. Additionally, levels of metallothionein in the mouse nigrostriatal system were measured by cadmium affinity method following administration of MPTP. Metallothionein content was significantly reduced in the substantia nigra (SN), and not in the nucleus caudatus putamen (NCP) following a single administration of MPTP (30 mg/kg, i.p.). Our results suggests that both lipoamide dehydrogenase activity and metallothionein levels may be critical for dopaminergic neuronal survival in Parkinson’s disease and provides further insights into the neurotoxic mechanisms involved in MPTP-induced neurotoxicity.  相似文献   

8.
Lipoamide dehydrogenase (EC 1.6.4.3) from the ketoglutarate dehydrogenase complex of adrenals catalyzes the oxidation of NADH by lipoamide and quinone compounds according to the "ping-pong" scheme. The catalytic constants of these reactions are equal to 220 and 24 s-1, respectively (pH 7.0). The maximal quinone reductase activity is observed at pH 5.6, whereas the lipoamide reductase activity changes insignificantly at pH 7.5-5.5. The maximal dihydrolipoamide-NAD+ reductase activity is observed at pH 7.8. The oxidative constants of quinone electron acceptors vary from 6 X 10(6) to 4 X 10(2) M-1 s-1 and increase with their redox potential. The patterns of NAD+ inhibition in the quinone reductase reaction differ from that of lipoamide reductase reaction. The quinones are reduced by lipoamide dehydrogenase in the one-electron mechanism.  相似文献   

9.
Redox-cycling of porcine heart lipoamide dehydrogenase in the presence of NADH and oxygen produced O2-. (NADH-oxidase activity) as demonstrated by (a) reduction of cytochrome c; (b) reduction of the Fe(III)-ADP complex; (c) lucigenin luminescence and (d) the inhibitory effect of superoxide dismutase. NAD+ and p-chloromercuribenzoate inhibited O2-. generation whereas arsenite enhanced it. Comparison of heart and yeast enzyme preparations revealed a close correlation between lipoamide reductase and NADH-oxidase activities. It is concluded that O2-. production is a molecular property of lipoamide dehydrogenase.  相似文献   

10.
The binding of pyridine nucleotide to human erythrocyte glutathione reductase, an enzyme of known three-dimensional structure, requires some movement of the side chain of Tyr197. Moreover, this side chain lies very close to the isoalloxazine ring of the FAD cofactor. The analogous residue, Ile184, in the homologous enzyme Escherichia coli lipoamide dehydrogenase has been altered by site-directed mutagenesis to a tyrosine residue (I184Y) [Russell, G. C., Allison, N., Williams, C. H., Jr., & Guest, J.R. (1989) Ann. N.Y. Acad. Sci. 573, 429-431]. Characterization of the altered enzyme shows that the rate of the pyridine nucleotide half-reaction has been markedly reduced and that the spectral properties have been changed to mimic those of glutathione reductase. Therefore, Ile184 is shown to be an important residue in modulating the properties of the flavin in lipoamide dehydrogenase. Turnover in the dihydrolipoamide/NAD+ reaction is decreased by 10-fold and in the NADH/lipoamide reaction by 2-fold in I184Y lipoamide dehydrogenase. The oxidized form of I184Y shows remarkable changes in the fine structure of the visible absorption and circular dichroism spectra and also shows nearly complete quenching of FAD fluorescence. The spectral properties of the altered enzyme are thus similar to those of glutathione reductase and very different from those of wild-type lipoamide dehydrogenase. On the other hand, spectral evidence does not reveal any change in the amount of charge-transfer stabilization at the EH2 level. Stopped-flow data indicate that, in the reduction of I184Y by NADH, the first step, reduction of the flavin, is only slightly slowed but the subsequent two-electron transfer to the disulfide is markedly inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Lipoamide dehydrogenase (E.C. 1.6.4.3) was found in Trypanosoma cruzi, Tulahuen strain, stocks Tul-2 and Q501, and CA-1 strain. After differential centrifugation of epimastigote homogenates, ammonium sulfate fractionation of the 105,000 g supernatant yielded a partially purified preparation which precipitated between 0.40 and 0.80 ammonium sulfate saturation. The enzyme (a) catalyzed the oxidation of dihydrolipoamide by NAD+ and the reduction of lipoamide by NADH, the forward reaction being 2.5-fold faster than the reverse reaction; (b) exhibited hyperbolic dependence on substrate concentration and (c) possessed diaphorase activity which was less than 5% of the lipoamide reductase activity. The NADH-reduced enzyme was inhibited by arsenite, cadmium and p-chloromercuribenzoate in a concentration-dependent manner. Substrate specificity allowed lipoamide dehydrogenase to be differentiated from T. cruzi trypanothione reductase and other NADPH-dependent flavoenzymes. After cell disruption, lipoamide dehydrogenase was found mostly in the cytosolic fraction and no evidence for association with the plasma membrane was obtained.  相似文献   

12.
I purified a new dihydrolipoamide dehydrogenase from a lpd mutant of Escherichia coli deficient in the lipoamide dehydrogenase (EC 1.6.4.3) common to the pyruvate dehydrogenase (EC 1.2.4.1) and 2-oxoglutarate dehydrogenase complexes. The occurrence of the new lipoamide dehydrogenase in lpd mutants, including a lpd deletion mutant and the immunological properties of the enzyme, showed that it is different from the lpd gene product. The new dihydrolipoamide dehydrogenase had a molecular weight of 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was expressed in low amounts. It catalyzed the NAD+-dependent reduction of dihydrolipoamide with a maximal activity of 20 mumol/min per mg of protein and exhibited a hyperbolic dependence of catalytic activity on the concentration of both dihydrolipoamide and NAD+. The possible implication of the new dihydrolipoamide in the function of 2-oxo acid dehydrogenase complexes is discussed, as is its relation to binding protein-dependent transport.  相似文献   

13.
The oxidation-reduction potential, E2, for the couple oxidized lipoamide dehydrogenase/2-electron reduced lipoamide dehydrogenase has been determined by measurement of equilibria of these enzyme species with lipoamide and dihydrolipoamide or with oxidized and reduced azine dyes. E2 is -0.280 V at pH 7, and deltaE2/deltapH is -0.06 V in the pH range 5.5 to 7.6. Values for E1, the oxidation-reduction potential for the couple 2-electron reduced enzyme/4-electron reduced enzyme, were obtained from measurements of the extent of dismutation of 2-electron reduced enzyme to form mixtures containing oxidized and 4-electron reduced enzyme. E1 is -0.346 V at pH 7, and deltaE1/deltapH is -0.06 V in the pH range 5.7 to 7.6. Spectra of oxidized enzyme and 4-electron reduced enzyme do not show variations with pH over this range, but the spectrum of the 2-electron reduced enzyme is pH-dependent, with the molar extinction at 530 nm changing from 3250 M-1 cm-1 at pH 8 to 2050 M-1 cm-1 at pH 5.2. The pH-dependent changes which are observed in the absorption properties of the 2-electron reduced enzyme are consistent with the disappearance of a charge transfer complex between an amino acid side chain and the oxidized flavin at the lower pH values, with the apparent pK of the side chain at pH 5. It has been suggested that the 530 nm absorbance of 2-electron reduced enzyme is due to a charge transfer complex between thiolate anion and oxidized flavin, and we propose that the thiolate anion is stabilized by interaction with a protonated base. The thermodynamic data predict that the amount of 4-electron reduced enzyme formed when the enzyme is reduced by excess NADH will be pH-dependent, with the greatest amounts seen at low pH values. These data support earlier evidence (Matthews, R.G., Wilkinson, K.D., Ballou, D,P., and Williams, C.H., Jr. (1976) in Flavins and Flavoproteins (Singer, T.P., ed) pp. 464-472; Elsevier Scientific Publishing Co., Amsterdam) that the role of NAD+ in the NADH-lipoamide reductase reaction catalyzed by lipoamide dehydrogenase is to prevent accumulation of inactive 4-electron reduced enzyme by simple reversal of the reduction of 2-electron reduced enzyme by NADH.  相似文献   

14.
Lipoamide dehydrogenase from pig heart exists in monomer-dimer equilibrium. The effect of the state of subunit aggregation on the multifunctionality of lipoamide dehydrogenase was investigated by the use of chemically trapped monomeric and dimeric enzymes. Reductive carboxymethylation with 2-mercaptoethanol-iodoacetate yields the stable monomeric enzyme which has been isolated for structural and kinetic studies. The chemically induced monomerization is accompanied by conformational changes resulting in an increased mobility of flavin-adenine dinucleotide. The chemically trapped monomer shows an enhanced diaphorase activity, a reduced electron transferase activity, and a complete loss in dehydrogenase as well as transhydrogenase activities. The enhanced diaphorase activity is associated with increased catalytic efficiencies and the reversal of an inhibitory NADH effect at high concentrations. Treatment of lipoamide dehydrogenase with dimethyl suberimidate gives amidinated samples containing crosslinked dimer. The crosslinked enzyme exhibits a higher dehydrogenase catalytic efficiency than the noncrosslinked enzyme with different kinetic mechanisms without significantly affecting the kinetic parameters of diaphorase reaction. Although the dimeric structure is intimately associated with the dehydrogenase activity, it does not preclude the diaphorase activity. An altered flavin-adenine dinucleotide environment accompanying monomerization is likely responsible for the enhanced diaphorase activity.  相似文献   

15.
Abstract In Methanothrix soehngenii acetate is first activated by an acetate thiokinase rather than a phosphotransacetylase. The specific activity of the acetate thiokinase was 5.29 μmol acetate activated min−1 mg−1 protein with a half maximum rate at 0.74 mM acetate and at 0.047 mM CoA. In cell-free extracts a CO-dehydrogenase activity was measured of 3.02 μmol min−1 mg−1 protein with a half maximum rate at 0.44 mM CO and at 0.18 mM methylviologen. NADP and NAD could not replace methylviologen. F420 showed only low activity as electron acceptor.  相似文献   

16.
The activities of several enzymes possibly implicated in lipogenesis were measured in the soluble fraction of homogenates of liver and adipose tissue of embryonic and growing chicks. The activities of adipose-tissue enzymes showed little or no change. The activities of hepatic hexose monophosphate-shunt dehydrogenases, malate dehydrogenase, 3-phosphoglyceraldehyde dehydrogenase and NAD-linked α-glycerophosphate dehydrogenase also showed little or no change. Isocitrate dehydrogenase activity in liver rose to a peak on the day of hatching and fell to half the peak value during the next 12 days, where it remained to 26 days after hatching. The activities of `malic' enzyme and citrate-cleavage enzyme showed very low stable values in embryonic liver and remarkable rises during the early part of the post-hatching period. An 85-fold increase in the activity of `malic' enzyme activity was completed in 7 days and a 15-fold increase in that of citrate-cleavage enzyme in 5 days. The activities then attained were maintained up to 26 days after hatching. 2. The increases in the activities of hepatic citrate-cleavage enzyme and `malic' enzyme occurred simultaneously with a marked increase in lipogenesis, suggesting a relationship of these enzymes to lipogenesis in chick liver. By contrast, activity of the hexose monophosphate-shunt dehydrogenases does not appear to be thus associated.  相似文献   

17.
The binding protein-dependent galactose transport of Salmonella typhimurium has been reconstituted in proteoliposomes made from a partially purified protein fraction (containing the three membrane protein implicated in this transport and a lipoamide dehydrogenase activity) and soybean phospholipids. The reconstitution of galactose transport requires the addition of the purified galactose binding protein. Transport is energized either by reduced lipoamide and NAD or by the membrane potential and is inhibited by ATP.  相似文献   

18.
Argyrou A  Blanchard JS  Palfey BA 《Biochemistry》2002,41(49):14580-14590
Lipoamide dehydrogenase catalyses the NAD(+)-dependent oxidation of the dihydrolipoyl cofactors that are covalently attached to the acyltransferase components of the pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and glycine reductase multienzyme complexes. It contains a tightly, but noncovalently, bound FAD and a redox-active disulfide, which cycle between the oxidized and reduced forms during catalysis. The mechanism of reduction of the Mycobacterium tuberculosis lipoamide dehydrogenase by NADH and [4S-(2)H]-NADH was studied anaerobically at 4 degrees C and pH 7.5 by stopped-flow spectrophotometry. Three phases of enzyme reduction were observed. The first phase, characterized by a decrease in absorbance at 400-500 nm and an increase in absorbance at 550-700 nm, was fast (k(for) = 1260 s(-)(1), k(rev) = 590 s(-)(1)) and represents the formation of FADH(2).NAD(+), an intermediate that has never been observed before in any wild-type lipoamide dehydrogenase. A primary deuterium kinetic isotope effect [(D)(k(for) + k(rev)) approximately 4.2] was observed on this phase. The second phase, characterized by regain of the absorbance at 400-500 nm, loss of the 550-700 nm absorbance, and gain of 500-550 nm absorbance, was slower (k(obs) = 200 s(-)(1)). This phase represents the intramolecular transfer of electrons from FADH(2) to the redox-active disulfide to generate the anaerobically stable two-electron reduced enzyme, EH(2). The third phase, characterized by a decrease in absorbance at 400-550 nm, represents the formation of the four-electron reduced form of the enzyme, EH(4). The observed rate constant for this phase showed a decreasing NADH concentration dependence, and results from the slow (k(for) = 57 s(-)(1), k(rev) = 128 s(-)(1)) isomerization of EH(2) or slow release of NAD(+) before rapid NADH binding and reaction to form EH(4). The mechanism of oxidation of EH(2) by NAD(+) was also investigated under the same conditions. The 530 nm charge-transfer absorbance of EH(2) shifted to 600 nm upon NAD(+) binding in the dead time of mixing of the stopped-flow instrument and represents formation of the EH(2).NAD(+) complex. This was followed by two phases. The first phase (k(obs) = 750 s(-)(1)), characterized by a small decrease in absorbance at 435 and 458 nm, probably represents limited accumulation of FADH(2).NAD(+). The second phase was characterized by an increase in absorbance at 435 and 458 nm and a decrease in absorbance at 530 and 670 nm. The observed rate constant that describes this phase of approximately 115 s(-)(1) probably represents the overall rate of formation of E(ox) and NADH from EH(2) and NAD(+), and is largely determined by the slower rates of the coupled sequence of reactions preceding flavin oxidation.  相似文献   

19.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   

20.
Summary From a thermophilic bacillus a viologen dependent pyridine nucleotide oxidoreductase has been purified and partially characterized. Its apparent molecular weight is about 120000 consisting of two subunits of equal or very similar molecular weight. Per molecular weight of 120000 the enzyme contains 4 FAD. FMN or labile sulfur could not be detected. The physiological role of the enzyme is not clear. It reduces NAD as well as NADP at the expense of reduced methylviologen. The reduced pyridine nucleotides can be reoxidized with carbamoylmethylviologen. The seven determined K m- and six K i-values show that the enzyme is suitable for the regeneration of NADH, NADPH, NAD and NADP. The stability in presence of oxidized and reduced methylviologen at 35°C or 60°C is satisfying for preparative work.Abbreviations MV Methylviologen species - MV2+ 1,1-dimethyl-4,4-bipyridinium dication=methylviologen oxidized - MV- methylviologen cation radical=methylviologen reduced - CAV carbamoylmethylviologen species - VDPNOR Viologen dependent pyridine nucleotide oxidoreductase - DSM Deutsche Sammlung für Mikroorganismen - Tris tris(hydroxymethyl)aminomethane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号