首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyketides are a medicinally important class of natural products. The architecture of modular polyketide synthases (PKSs), composed of multiple covalently linked domains grouped into modules, provides an attractive framework for engineering novel polyketide-producing assemblies. However, impaired domain-domain interactions can compromise the efficiency of engineered polyketide biosynthesis. To facilitate the study of these domain-domain interactions, we have used nuclear magnetic resonance (NMR) spectroscopy to determine the first solution structure of an acyl carrier protein (ACP) domain from a modular PKS, 6-deoxyerythronolide B synthase (DEBS). The tertiary fold of this 10-kD domain is a three-helical bundle; an additional short helix in the second loop also contributes to the core helical packing. Superposition of residues 14-94 of the ensemble on the mean structure yields an average atomic RMSD of 0.64 +/- 0.09 Angstrom for the backbone atoms (1.21 +/- 0.13 Angstrom for all non-hydrogen atoms). The three major helices superimpose with a backbone RMSD of 0.48 +/- 0.10 Angstrom (0.99 +/- 0.11 Angstrom for non-hydrogen atoms). Based on this solution structure, homology models were constructed for five other DEBS ACP domains. Comparison of their steric and electrostatic surfaces at the putative interaction interface (centered on helix II) suggests a model for protein-protein recognition of ACP domains, consistent with the previously observed specificity. Site-directed mutagenesis experiments indicate that two of the identified residues influence the specificity of ACP recognition.  相似文献   

2.
Collagens as multidomain proteins   总被引:1,自引:0,他引:1  
M van der Rest  R Garrone 《Biochimie》1990,72(6-7):473-484
The number of proteins known to contain collagen-like triple helical domains is rapidly increasing. The functions of these domains are to provide molecular rods that separate spatially non-triple helical domains with varied properties and structures and to permit lateral interactions between molecules. Two-thirds of the amino acids of the triple helical domains have their side-chains at the surface of the protein. The triple helix is also a structure that is easily predictable from the primary structure. The structure of several recently discovered collagens are discussed in terms of domains and functions. The triple helical domains have sizes varying from 33 to over 1,000 amino acid residues. The longest uninterrupted triple helices are involved in the formation of the classical quarter-staggered fibrils. Other triple helical domains permit varied molecular aggregates. A very broad spectrum of non-triple helical or globular domains are interspersed by triple helices. Only those located at the extremities of the molecules are large in size, sometimes several hundred kDa, while the domains separating 2 triple helices are small (less than 50 amino acids) and provide the molecules with hinges, proteolytic cleavage sites or other specialized functions like a glycosaminoglycan attachment site. If the assembly of the 3 chains required for the triple helix formation can be controlled in vitro, collagen-like molecules offer an as yet unexploited potential for protein engineering.  相似文献   

3.
Recent advances in functional genomics have helped generate large-scale high-throughput protein interaction data. Such networks, though extremely valuable towards molecular level understanding of cells, do not provide any direct information about the regions (domains) in the proteins that mediate the interaction. Here, we performed co-evolutionary analysis of domains in interacting proteins in order to understand the degree of co-evolution of interacting and non-interacting domains. Using a combination of sequence and structural analysis, we analyzed protein-protein interactions in F1-ATPase, Sec23p/Sec24p, DNA-directed RNA polymerase and nuclear pore complexes, and found that interacting domain pair(s) for a given interaction exhibits higher level of co-evolution than the non-interacting domain pairs. Motivated by this finding, we developed a computational method to test the generality of the observed trend, and to predict large-scale domain-domain interactions. Given a protein-protein interaction, the proposed method predicts the domain pair(s) that is most likely to mediate the protein interaction. We applied this method on the yeast interactome to predict domain-domain interactions, and used known domain-domain interactions found in PDB crystal structures to validate our predictions. Our results show that the prediction accuracy of the proposed method is statistically significant. Comparison of our prediction results with those from two other methods reveals that only a fraction of predictions are shared by all the three methods, indicating that the proposed method can detect known interactions missed by other methods. We believe that the proposed method can be used with other methods to help identify previously unrecognized domain-domain interactions on a genome scale, and could potentially help reduce the search space for identifying interaction sites.  相似文献   

4.
Mutations in ABCC6 are responsible for pseudoxanthoma elasticum (PXE), a rare genetic disease affecting the elastic tissues of the body. ABCC6 encodes a 1503 amino acid long ABC transporter, ABCC6/MRP6. The functional link between the impaired activity of the protein and the disease is not known. We have built a homology model of this transporter, and analyzed the distribution of the known 119 missense PXE-associated mutations within the predicted structure. Significant clustering of the missense mutations has been found at complex domain-domain interfaces: at the transmission interface that involves four intracellular loops and the two ABC domains as well as at the ABC-ABC interacting surfaces. The mutations affecting these regions are 2.75 and 3.53-fold more frequent than the average mutational rate along the transporter protein sequence. These data provide a genetic proof of the importance of these domain-domain interactions in the ABCC6 transporter.  相似文献   

5.
A method that allows the quantitative determination of reaction volumes from sedimentation velocity experiments in an analytical ultracentrifuge is presented. Combined with a second method for detecting pressure-induced depolymerization, general characteristics of polymer distributions may be probed. We show that it is possible to determine if a sample is in an equilibrium or metastable state of subunit association. Our approach to probe macromolecular aggregation systems by small pressure perturbations is not restricted to the use of centrifuges. This method has been applied to characterize certain aspects of the polymerization of tobacco mosaic virus coat protein (TMVP). There are at least two helical polymer conformations in RNA-free coat protein rods. The smaller, helix I, polymers are limited to sizes below about 70 subunits (four to five helical turns) and undergo some kind of cooperative conformational change before further subunits may be added indefinitely. In contrast to helix I, the larger helix II polymers occur as broader and skewed size distributions. Under moderately strong polymerization conditions, the equilibrium state can contain both types of helical rods. The reaction volume for the addition of trimers is -220 ml/mol for both types of helical polymers. These results are compared with the results of previous thermodynamic analyses of TMVP polymerization.  相似文献   

6.
Apolipoprotein (apo) A-I mediates many of the anti-atherogenic functions attributed to high density lipoprotein. Unfortunately, efforts toward a high resolution structure of full-length apoA-I have not been fruitful, although there have been successes with deletion mutants. Recently, a C-terminal truncation (apoA-IΔ185–243) was crystallized as a dimer. The structure showed two helical bundles connected by a long, curved pair of swapped helical domains. To compare this structure to that existing under solution conditions, we applied small angle x-ray scattering and isotope-assisted chemical cross-linking to apoA-IΔ185–243 in its dimeric and monomeric forms. For the dimer, we found evidence for the shared domains and aspects of the N-terminal bundles, but not the molecular curvature seen in the crystal. We also found that the N-terminal bundles equilibrate between open and closed states. Interestingly, this movement is one of the transitions proposed during lipid binding. The monomer was consistent with a model in which the long shared helix doubles back onto the helical bundle. Combined with the crystal structure, these data offer an important starting point to understand the molecular details of high density lipoprotein biogenesis.  相似文献   

7.
8.
Mechanisms of domain closure in proteins   总被引:5,自引:0,他引:5  
Certain enzymes respond to the binding of substrates and coenzymes by the closure of an active site that lies in a cleft between two domains. We have examined the mechanism of the domain closure in citrate synthase, for which atomic co-ordinates are available for "open" and "closed" forms. We show that the mechanism of domain closure involves small shifts and rotations of packed helices within the two domains and at their interface. Large motions of distant segments of the structure are the cumulative effect of the small relative shifts in intervening pairs of packed segments. These shifts are accommodated not by changes in packing but rather by small conformational changes in side-chains. We call this the helix interface shear mechanism of domain closure. The relative movements of packed helices follow the principles suggested by our recent study of insulin. This mechanism of domain closure is quite different from the hinge mechanisms that allow the rigid body movements of domains in immunoglobulins. The large interface between the domains of citrate synthase precludes a simple hinge mechanism for its conformational change. The helix interface shear mechanism of conformational change occurs in other enzymes that contain extensive domain-domain interfaces.  相似文献   

9.
Engel DE  DeGrado WF 《Proteins》2005,61(2):325-337
While the geometry and sequence preferences of turns that link two beta-strands have been exhaustively explored, the corresponding preferences for sequences that link helical structures have been less well studied. Here we examine the interhelical geometry of two connected helices as a function of their link's length. The interhelical geometry of a helical pair appears to be significantly influenced by the number of linking residues. Furthermore, for relatively short link lengths, a very limited number of predominant conformations are observed, which can be categorized by their phi/psi angles. No more than two predominant linking backbone conformations are observed for a given link length, and some linking backbone conformations correlate strongly with distinctive interhelical geometric parameters. In this study, sequence and hydrogen-bonding patterns were defined for predominant interhelical link motifs. These results should assist in both protein structure prediction and de novo protein design.  相似文献   

10.
The sperm flagella of the blowfly Sarcophaga bullata demonstrate the relationship of radial projections in the matrix region to the microtubule organization of the axoneme. The A microtubule of each peripheral doublet is connected to the central sheath by a series of paired radial links. The links lie along the tubule wall with a alternate spacing of about 320/560 A. The distal end of each link is enlarged into a globular head that connects via a transitional link to the helical sheath around the central microtubules. The radial link pairs are disposed in the form of a double helix with a pitch of about 1760 A. It is proposed that a similar organization is common to all cilia and flagella showing ninefold symmetry and must provide, in part, the morphological basis for motility.  相似文献   

11.
Fourier-transform infrared spectroscopy was used to examine the secondary structure of rabbit liver cytochrome b5 and the polar and nonpolar domains of the protein. The data for both the polar and nonpolar domains agree well with those previously obtained by other physical techniques. In particular it was found that the nonpolar membrane-binding domain was predominantly alpha helix and that the polar domain was also highly helical, but not all alpha helix. The independence of the two domains in the whole molecule was, in general, confirmed by the additivity of the spectra of the two domains. The small differences that were seen indicate that there is a loss of alpha helix when the protein is cut into the two domains. In addition, there appeared to be a slight difference in the exposure to solvent of the amide NH groups in the alpha-helical portion of the nonpolar domain when it was examined in isolation.  相似文献   

12.
13.
Protein-protein interactions within the Bcl-2 family are mediated by the helical BH3 domains of pro-apoptotic family members. To study the mechanism of this BH3 domain-protein interaction, a series of cyclic lactam bridged BH3 peptide analogues were synthesized by a novel combined Fmoc/tBu/Bzl protections strategy. These peptide analogues were studied by circular dichroism spectroscopy and found to adopt highly helical structure. These helical peptides stabilized by a lactam bridge serve as useful models to analyze the structure-function relationship of the pro-apoptotic BH3 domains. Furthermore, the synthetic method for lactam bridge incorporation reported here may find application in studies of other helical structures and development of helix mimics.  相似文献   

14.
Amino acid sequences of human collagen alpha 1(VI) and alpha 2(VI) chains were completed by cDNA sequencing and Edman degradation demonstrating that the mature polypeptides contain 1009 and 998 amino acid residues respectively. In addition, they contain small signal peptide sequences. Both chains show 31% identity in the N-terminal (approximately 235 residues) and C-terminal (approximately 430 residues) globular domains which are connected by a triple helical segment (335-336 residues). Internal alignment of the globular sequences indicates a repetitive 200-residue structure (15-23% identity) occurring three times (N1, C1, C2) in each chain. These repeating subdomains are connected to each other and to the triple helix by short (15-30 residues) cysteine-rich segments. The globular domains possess several N-glycosylation sites but no cell-binding RGD sequences, which are exclusively found in the triple helical segment. Sequencing of alpha 2(VI) cDNA clones revealed two variant chains with a distinct C2 subdomain and 3' non-coding region. The repetitive segments C1, C2 and, to a lesser extent, N1 show significant identity (15-18%) to the collagen-binding A domains of von Willebrand factor (vWF) and they are also similar to some integrin receptors, complement components and a cartilage matrix protein. Since the globular domains of collagen VI come into close contact with triple helical segments during the formation of tissue microfibrils it suggests that the globular domains bind to collagenous structures in a manner similar to the binding of vWF to collagen I.  相似文献   

15.
Structural data as collated in the Protein Data Bank (PDB) have been widely applied in the study and prediction of protein-protein interactions. However, since the basic PDB Entries contain only the contents of the asymmetric unit rather than the biological unit, some key interactions may be missed by analysing only the PDB Entry. A total of 69,054 SCOP (Structural Classification of Proteins) domains were examined systematically to identify the number of additional novel interacting domain pairs and interfaces found by considering the biological unit as stored in the PQS (Protein Quaternary Structure) database. The PQS data adds 25,965 interacting domain pairs to those seen in the PDB Entries to give a total of 61,783 redundant interacting domain pairs. Redundancy filtering at the level of the SCOP family shows PQS to increase the number of novel interacting domain-family pairs by 302 (13.3%) from 2277, but only 16/302 (1.4%) of the interacting domain pairs have the two domains in different SCOP families. This suggests the biological units add little to the elucidation of novel biological interaction networks. However, when the orientation of the domain pairs is considered, the PQS data increases the number of novel domain-domain interfaces observed by 1455 (34.5%) to give 5677 non-redundant domain-domain interfaces. In all, 162/1455 novel domain-domain interfaces are between domains from different families, an increase of 8.9% over the PDB Entries. Overall, the PQS biological units provide a rich source of novel domain-domain interfaces that are not seen in the studied PDB Entries, and so PQS domain-domain interaction data should be exploited wherever possible in the analysis and prediction of protein-protein interactions.  相似文献   

16.
In this article, we investigate the principal structural features of the DNA double helix and their effects on its elastic mechanical properties. We develop, in the pursuit of this purpose, a helical continuum model consisting of a soft helical core and two stiff ribbons wrapping around it. The proposed model can reproduce the negative twist-stretch coupling of the helix successfully as well as its global stretching, bending, and torsional rigidities measured experimentally. Our parametric study of the model using the finite element method further reveals that the stiffness of phosphate backbones is a crucial factor for the counterintuitive overwinding behavior of the duplex and its extraordinarily high torsional rigidity, the major-minor grooves augment the twist-stretch coupling, and the change of the helicity might be responsible for the transition from a negative to a positive twist-stretching coupling when a tensile force is applied to the duplex.  相似文献   

17.
Alexander RW  Schimmel P 《Biochemistry》1999,38(49):16359-16365
We report here evidence for mutations that break domain-domain functional communication in a synthetase-tRNA complex. Each synthetase is roughly divided into two major domains that are paralleled by the two arms of the L-shaped tRNA structure. The active-site-containing domain interacts with the acceptor arm of the tRNA. The second domain frequently interacts with the anticodon-containing arm. By an induced-fit mechanism, contacts with the anticodon can activate formation of a robust transition state at a site over 70 A away. This induced-fit-based activation is thought to occur through domain-domain signaling and is seen by the enhancement of aminoacylation of the anticodon-containing full tRNA versus a substrate based on the acceptor arm alone. Here we describe a rationally designed mutant methionyl-tRNA synthetase containing two point substitutions at sites that potentially link an anticodon-binding motif to the catalytic domain. The double mutation had no effect on interactions with either the isolated acceptor arm or the anticodon stem-loop. In contrast to interactions with the separate pieces, the mutant enzyme was severely impaired for binding the native tRNA and lost much of its ability to enhance the rate of charging of the full tRNA over that of a substrate based on the acceptor arm alone. We propose that these residues are part of a network for facilitating domain-domain communication for formation of an active synthetase-tRNA complex by induced fit.  相似文献   

18.
Filamins are multi-domain, actin cross-linking, and scaffolding proteins. In addition to the actin cross-linking function, filamins have a role in mechanosensor signaling. The mechanosensor function is mediated by domain-domain interaction in the C-terminal region of filamins. Recently, we have shown that there is a three-domain interaction module in the N-terminal region of filamins, where the neighboring domains stabilize the structure of the middle domain and thereby regulate its interaction with ligands. In this study, we have used small-angle X-ray scattering as a tool to screen for potential domain-domain interactions in the N-terminal region. We found evidence of four domain-domain interactions with varying flexibility. These results confirm our previous study showing that domains 3, 4, and 5 exist as a compact three domain module. In addition, we report interactions between domains 11–12 and 14–15, which are thus new candidate sites for mechanical regulation.  相似文献   

19.
Arshava B  Taran I  Xie H  Becker JM  Naider F 《Biopolymers》2002,64(3):161-176
The NMR properties of seven peptides representing the transmembrane domains of the alpha-factor receptor from Saccharomyces cerevisiae were examined in trifluoroethanol/water (4:1) at 10 to 55 degrees C. The parameters extracted indicated all peptides were helical in this membrane mimetic solvent. Using chemical shift indices as the criterion, helicity varied from 64 to 83%. The helical residues in the peptides corresponded to the region predicted to cross the hydrocarbon interior of the bilayer. A study of a truncated 25-residue peptide corresponding to domain 2 gave evidence that the helix extended all the way to the N-terminus of this peptide, indicating that sequence and not chain end effects are very important in helix termination for our model peptides. Both nuclear Overhauser effect spectroscopy (NOESY) connectivities and chemical shift indices revealed significant perturbations around prolyl residues in the helices formed by transmembrane domains 6 and 7. Molecular models of the transmembrane domains indicate that helices for domains 6 and 7 are severely kinked at these prolyl residues. The helix perturbation around proline 258 in transmembrane domain 6 correlates with mutations that cause phenotypic changes in this receptor.  相似文献   

20.
Koch O  Cole J 《Proteins》2011,79(5):1416-1426
A new automated helix assignment method is presented that leads to a more consistent definition of the helix termini, especially of the helix C-terminus. The method assigns a helix to segments of protein chain where adjacent helical turn structures are observed, capped by specific distorted turn types (e.g., open helical turns without a hydrogen bond) or capping motifs (e.g., the Schellman motif). Helix termini are detected by observing the behavior of the NH group in N-termini and the CO group in C-termini; in each case, the respective group must be free to interact with hydrogen bonding partners outside of the putative helix for a helix terminus to be assigned. The presented assignment method and SHAFT-assigned helices are part of Secbase and are made available with Relibase+ 3.0 and the free web version of Relibase 3.0. The method can also be used for the helix assignments of additional protein structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号