首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of one or several systems of microtubules, consisting of a central bundle that branches off towards the basal and distal ends of epidermal cells of Carausius morosus has been shown by indirect immuno-fluorescence microscopy using monospecific anti-tubulin. The pattern of microtubules coincides with the position of the ommochrome granules and their migration path during physiological colour change. The ommochrome granules stick to isolated bundles of microtubules. Small bundles of microtubules extend almost perpendicularly towards the apical cell membrane where they are attached. Distally they are covered by pore channels within the cuticle. Parallel to the basal cell membrane and in close contact with it, there are very small bundles of microtubules. These findings strongly support the idea that during physiological colour change the ommochrome granules migrate along a firmly fixed system of microtubules.  相似文献   

2.
Carausius morosus is one of the few insects exhibiting physiological colour change in the epidermal cells. The distribution of ommochromes, carotinoids, and pterindines is analysed in light and dark adapted animals.In light adapted animals the ommochrome granules are concentrated at the proximal cell membrane. During dark adaption they move to the distal cell membrane, dispersing there over the whole cell forming a shield of dark pigment. The carotinoid granules behave in a similar way. The rod shaped pteridine granules are concentrated in the distal half of the epidermis. They show no daytime dependent movements. However, they take part in the physiological colour change indirectly. Apparently, biliverdin is not attached to granules but dissolved in the epidermal cells.  相似文献   

3.
The eye pigment system in Drosophila melanogaster has been studied with the electron microscope. Details in the development of pigment granules in wild type flies and in three eye color mutants are described. Four different types of pigment granules have been found. Type I granules, which carry ommochrome pigment and occur in both primary and secondary pigment cells of ommatidia, are believed to develop as vesicular secretions by way of the Golgi apparatus. The formation of Type II granules, which are restricted to the secondary pigment cells and contain drosopterin pigments, involves accumulation of 60- to 80-A fibers producing an elliptical granule. Type III granules appear to be empty vesicles, except for small marginal areas of dense material; they are thought to be abnormal entities containing ommochrome pigment. Type IV granules are characteristic of colorless mutants regardless of genotype, and during the course of development they often contain glycogen, ribosomes, and show acid phosphatase activity; for these reasons and because of their bizarre and variable morphology, they are considered to be autophagic vacuoles. The 300-A particles commonly found in pigment cells are identified as glycogen on the basis of their morphology and their sensitivity to salivary digestion.  相似文献   

4.
Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.  相似文献   

5.
The morphological characteristics and ommochrome quantity in the integument of red, white, and wild type (black-grey) Armadillidium vulgare were studied. The red phenotype was found to possess two kinds of immature ommochrome pigment granules within its pigment cells, in addition to mature pigment granules. The immature granules seemed to contain uniformly distributed fibrilles, or to have an electron-dense central region surrounded by an electron-lucent outer edge. Since these immature pigment granules were typically observed to be distributed along with the mature ones, and were also more easily extractable than the wild type's, it is hypothesized that ommochrome granule maturation in the red phenotype may occur slowly due to a defect in the pigment granule internal process which combines pigments with matrix proteins. Regarding the white phenotype, although its pigment cells were undeveloped, several large-sized vesicles containing a small amount of electron-dense material appeared in the pigment cell cytoplasm. The wild and red type males of A. vulgare were found to have an ommochrome content twice as large as that of the corresponding females, with no ommochrome pigment being detected in the white phenotype. The genetic relationship between the white and red phenotypes was discussed using as a basis the observed pigment granule structure.  相似文献   

6.
Cream markings aligned along the dorsal region of the female isopod, A. vulgare, were investigated with light and a fluorescence microscope and an electron microscope. Biochemical studies were also carried out. The cream markings were observed in the dorsal integument as a group of cream-colored chromatophores that emit a yellow fluorescence. These chromatophores, which are distinguishable from ommochrome chromatophores, contained numerous granules in the cytoplasm, and these granules (0.6–3.0 μm in length by 0.4–1.5 μm in width) were electron-lucent and spheroidal in shape with a concentric arrangement of membranes. Based on various biochemical analyses, the principal component of the yellow pigment isolated from the cream markings was identified as sepiapterin. These facts revealed that the cream markings are the chromatophores that contain pteridine granules. The males have no cream markings like those of the females, since the cream-colored chromatophores are externally hidden by the ommochrome chromatophore layer. The content of sepiapterin in the males was about two times greater than that in the females. This quantitative difference in sepiapterin content between males and females suggests that the pteridine formation in this pigment cell may be regulated by hormones associated with sex determination.  相似文献   

7.
In epidermal cells of Dysdercus species, two types of pigment granules were detected using both light and electron microscopic methods; the granules differed in colour, size, distribution and osmiophily. Red (D. intermedius) and yellow (D. nigrofasciatus) epidermal cells contained both types of granules, but in white cells only one type was present. Chromatographic analyses showed that the larger granules were more transparent to electrons, and contained uric acid, while the smaller ones contained erythropterin, became coloured later, and were osmiophilic. In accordance with these findings, in the testes of D. intermedius both granule types were present, but in the testes of D. nigrofasciatus only those containing erythropterin. The number of granules per cell varied with the species and developmental stage. Epidermal cells of D. intermedius contained more erythropterin granules than those of D. nigrofasciatus, the reverse occurring in the testes. This pattern corresponded to the visible colouration of the insects. As the development progressed, a decrease of the red and an increase of the white granules took place in the coloured epidermal cells. The main amount of pteridines, except isoxanthopterin, was accumulated in the integument of the insects studied. Chemical and histological data showed the influence of pterins on insect colouration. Orange, yellow and red colours were caused by different amounts of erythropterin containing special granules in the epidermal cells, and the white colour only by uric acid containing granules. A partial melanization of the cuticle resulted in dark spots below which pteridines were deposited additionally in the epidermal cells. Considering erythropterin, the quantitative chemical data are in accordance with the histological ones and also with the colouration externally visible. Intensively red coloured stages had a higher concentration of erythropterin and more corresponding granules than the light-red coloured ones; the lowest amount was found in yellow coloured insects. Therefore, the pigmentation effect of erythropterin, which reached from yellow to orange and red, depended on its concentration and played the most important role in the colouration of the Dysdercus species studied, uric acid was responsible for the colouration of the white parts of the integument.  相似文献   

8.
Leaf spongy mesophyll cells form an interconnected network of branched cells and intercellular spaces to maximize the surface area available for light capture and photosynthetic gas exchange. To investigate the morphogenetic events leading to cell separation and branching in Arabidopsis thaliana, we used mesophyll-specific promoters to facilitate imaging of mesophyll cell shape and microtubule (MT) organization over multiple spatiotemporal scales without interference from the overlying epidermal cells. We show that cells enlarge by selective expansion of cell wall regions in contact with intercellular spaces. Cell–cell contacts remain relatively fixed in size, forming the termini of interconnecting branches. Surprisingly, classic schizogeny (de-adhesion of neighboring cells) is relatively infrequent, being related to the local topology of cell junctions during early expansion. Intercellular spaces cue the position of stable MT bundles, which in turn promote efficient dilation of intercellular spaces and cell branching. Our data provide insights into mesophyll morphogenesis and MT organization and lay the groundwork for future investigations.

Live imaging reveals a positive feedback loop between cell expansion and microtubule organization that facilitates efficient cell branching and intercellular space dilation in spongy mesophyll cells.  相似文献   

9.
Four types of prosoplasmatic galls induced by Daphnephila midges are found on leaves of Machilus zuihoensis, a species endemic to Taiwan: urn- and small urn-shaped, obovate, and hairy oblong galls. In addition to containing nutritive tissues, these galls are lined with fungal hyphae. The objective of this study was to describe and compare the structural organization of the various gall morphologies and to examine the ultrastructure of the nutritive and fungal cells lining the gall chambers. The morphology and ultrastructure of mature-stage galls were examined by light, scanning electron, and transmission electron microscopy. Diverse epidermal cell shapes and wax textures were observed in the leaves and galls of M. zuihoensis. In small urn-shaped, obovate, and hairy oblong galls vascular bundles extend from the gall base to near the centre of the gall top. In contrast, vascular bundles in urn-shaped galls are distributed in the gall wall and extend to close to the outer gall top. Trichomes were present only abaxially on leaves and on hairy oblong gall surfaces. Starch granules, tannins, and mucilage were distributed differently among the four gall types. Further, fungal mycelia spread in the interior gall wall and partially passed through the intercellular spaces of nutritive cells and reached the sclerenchyma. Histological analyses revealed that the surface structure of galls differs from that of the leaf and that the epidermal organization differs among the four gall types. Different types of leaf galls on the same plant have different patterns of tissue stratification and contain different ergastic substances. The results of this study will contribute to the understanding of tritrophic relationships and the complex interactions among parasitic gall-inducing insects, mutualistic fungi, and host plants.  相似文献   

10.
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other’s localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.  相似文献   

11.
Microtubule-organizing centers (MTOCs) concentrate microtubule nucleation, attachment and bundling factors and thus restrict formation of microtubule arrays in spatial and temporal manner. How MTOCs occur remains an exciting question in cell biology. Here, we show that the transforming acidic coiled coil–related protein Mia1p/Alp7p functions in emergence of large MTOCs in interphase fission yeast cells. We found that Mia1p was a microtubule-binding protein that preferentially localized to the minus ends of microtubules and was associated with the sites of microtubule attachment to the nuclear envelope. Cells lacking Mia1p exhibited less microtubule bundles. Microtubules could be nucleated and bundled but were frequently released from the nucleation sites in mia1Δ cells. Mia1p was required for stability of microtubule bundles and persistent use of nucleation sites both in interphase and postanaphase array dynamics. The γ-tubulin–rich material was not organized in large perinuclear or microtubule-associated structures in mia1Δ cells. Interestingly, absence of microtubules in dividing wild-type cells prevented appearance of large γ-tubulin–rich MTOC structures in daughters. When microtubule polymerization was allowed, MTOCs were efficiently assembled de novo. We propose a model where MTOC emergence is a self-organizing process requiring the continuous association of microtubules with nucleation sites.  相似文献   

12.
Summary Organizational changes in the microtubules of isolated generative cells of Allemanda neriifolia during mitosis were examined using anti--tubulin and confocal laser scanning microscopy. Due to an improved resolution and a lack of out-of-focus interference, the images of the mitotic cytoskeleton obtained using the confocal microscope are much clearer than those obtained using the non-confocal fluorescence systems. In the confocal microscope one can see clearly that the spindle-shaped interphase cells contain a cage-like cytoskeleton consisting of numerous longitudinally oriented microtubule bundles and some associated smaller bundles. At prophase, the shape of the cells invariably becomes spherical. The microtubule cytoskeleton inside the cells concomitantly changes into a less organized form — consisting of thick bundles, patches, and dots. This structural form is not very stable, and soon afterwards the cytoskeleton changes into a reticulate network. Then the nuclear envelope breaks down, and the microtubules become randomly dispersed throughout the cell. Afterwards, the microtubules reorganize themselves into a number of half-spindle-like structures, each possessing a microtubule-nucleating center. The locations of these centres mark out the positions of the presumptive spindle poles. Numerous microtubules radiate from these centres toward the opposite pole. At metaphase, the microtubules form a number of bipolar spindles. Each spindle has two half-spindles, and each half-spindle has a sharply focused microtubule centre at the pole region. From the centres, kinetochore and non-kinetochore microtubules radiate toward the opposite half-spindle. At anaphase A, sister chromatids separate, the cells elongate, and the kinetochore microtubules disappear; the non-kinetochore microtubules, however, remain, and a new array of microtubules, in the form of a cage, appears. The peripheral cage bundles and the non-kinetochore bundles coverge into a sharp point at the pole region. Later, at anaphase B the microtubule cytoskeleton undergoes reorganization giving rise to a new array of longitudinally oriented microtubule bundles in the cell centre and a cage-like cytoskeleton in the periphery. At telophase, some of the cells elongate further, but some become spherical. The microtubules in the central region of the elongated cell become partially disrupted due to the formation of a phragmoplast-junction-like structure in the mid-interzone region. The microtubule bundles at the periphery are spirally organized, and they appear not to be disrupted by the phragmoplast-like junction. The microtubules in the spherical telophase cells (unlike those seen in the elongated telophase cells) are arranged differently, and no phragmoplast-junction-like structure forms in the spherical cells. The structural and functional significances of some of these new features of the organization of the microtubule cytoskeleton as revealed by the confocal microscope are discussed.  相似文献   

13.
Dark-red pigment granules were found in the brain and ganglion of the normal strain of the silkworm, Bombyx mori, by light microscopy. No other pigmentation was seen in the brain or ganglia. Electron microscopy showed that the granules were electron-dense. The granules were similar to the ommochrome-containing pigment granules that are present in the epidermal cells of the quail mutant, as previously reported. The pigment in the larval central nervous system (CNS) of the normal silkworm was identical to the ommin standard with respect to the absorption spectrum, the infrared spectrum, and the Rf value in thin-layer chromatography (TLC). After acid hydrolysis of the pigment, 3-hydroxykynurenine was detected by TLC. The pigment granules in the CNS contained mainly ommin. An ommochrome-binding protein was also detected in the CNS by in vitro binding studies and Western blotting. The ommochrome granules may have an important function in the CNS of the silkworm.  相似文献   

14.
Summary The skin of the lancelet, Amphioxus lanceolatus, was investigated with the aid of the electron microscope and some histochemical techniques. It was shown that the single type of epidermal cells is capable of performing several activities. These cells produce and attach a thin mucous surface layer and it is also suggested that a primitive form of keratinization occurs in them. Furthermore they may produce pigment granules and serve as glycogen stores. A thin lamina below the epidermal cells cements their basal surfaces and is itself basally anchored in the underlying corium with the aid of an elaborate system of processes. The corium fibre layer in most cases rests upon a single fibrocyte layer. It is at irregular intervals penetrated by bundles of fibres which originate as branches of the corium collagen fibres.Aided by grants 2124-4/5 from Statens naturvetenskapliga forskningsråd.  相似文献   

15.
The w-3(oe) silkworm mutant has white eyes and eggs due to the absence of ommochrome pigments in the eye pigment cells and serosa cells. The mutant is also characterized by translucent larval skin resulting from a deficiency in the transportation of uric acid, which acts as a white pigment in larval epidermal cells. A silkworm homolog of the fruitfly white gene, Bmwh3, a member of ATP-binding cassette transporter superfamily, was mapped on the w-3 locus. The w-3(oe) mutant has a single-base deletion in exon 2 and a premature stop codon at the 5' end of exon 3. These results show that w-3 is equivalent to Bmwh3 and is responsible for the transportation of ommochrome precursors and uric acid into pigment granules and urate granules, respectively.  相似文献   

16.
Here we show a new effect of Ca2+ on microtubule morphology: Ca2+ can cause smooth curving of microtubules in the presence of microtubule-associated proteins (MAPs). In vitro, microtubules self-organize, forming complex dissipative structures. Such structures may be strongly affected by relatively weak external factors. A factor such as Ca2+ potentially influences spatiotemporal patterns of microtubule assembly, but the dynamics are unclear. We tested Ca2+ effects on microtuble formation. Using EM, microtubule length, curvature, and alignment and were measured in two systems: 2 mg/ml microtubule protein containing MAPs and 1 mM EGTA with and without 1 mM Ca2+. The two systems were then tested using light scattering. In low Ca2+, a birefringent microtubular pattern is seen, increasing with polymerization. When 1 mM Ca2+ is added to the solution. anisotropic phase is prevented without microtubule disruption. This demonstrates an additional mechanism by which Ca2+ can alter the dynamics and morphology of microtules.  相似文献   

17.
The anatomy of leaves and inflorescence peduncles was studied in species of Monotrema (4), Stegolepis (1) and Saxofridericia (1), aiming to contribute to the taxonomy of Rapateaceae. The form and structure of leaf blade midrib and the form of the inflorescence peduncle are diagnostic characteristics for the studied species. Monotrema is distinguished by: epidermal and vascular bundle outer sheath cells containing phenolic compounds in both organs; leaf blade with palisade and spongy chlorenchyma, arm-parenchyma, and air canals between the vascular bundles; leaf sheath with phenolic idioblasts in the mesophyll; inflorescence peduncle with tabular epidermal cells and air canals in the cortex and pith. Such characteristics support the recognition of Monotremoideae, which includes Monotrema. Stegolepis guianensis is distinguished by thick-walled epidermal cells and a plicate chlorenchyma in both organs; leaf blade with subepidermal fiber strands in abaxial surface and a heterogeneous mesophyll; inflorescence peduncle with rounded epidermal cells, a hypodermis with slightly thick-walled cells, and a pith with isodiametric cells and vascular bundles. Saxofridericia aculeata is distinguished by papillate epidermal cells in both organs; unifacial leaf blade with subepidermal fiber strands in both surfaces and a regular chlorenchyma; leaf sheath with a hypodermis in both surfaces and fiber bundles in the mesophyll; inflorescence peduncle with an undefined cortex and a hypodermis with thick-walled cells. S. guianensis shares few characteristics with S. aculeata, supporting their placement in different tribes.  相似文献   

18.
Previous biochemical analyses showed the differential accumulation of the epidermal structural protein, which yielded S-carboxymethylated epidermal protein A (SCMEpA), in the hydrocortisone-induced in vitro keratinization of 13-day embryonic chick tarsometatarsal skin growing in a chemically defined medium (Sugimoto et al., 1974). Fine structural features of such an in vitro keratinization process were studied by electron microscopy in the present work.After 2 days of culture with hydrocortisone (0.02 or 0.2 μM), development of the tonofilament bundles occurred to some extent, but the keratinized layer was not formed. Keratinization was observed after 4 days of culture with hydrocortisone (0.02 or 0.2 μM). Desmosomes and tonofilament bundles were prominent in the cytoplasm of the basal and intermediate cell layers of the epidermis. Keratohyalin granules and lipid droplets appeared in the upper layer. Degradation of cellular organelles such as nuclei and mitochondria then proceeded, leaving only filament bundles and electron-dense amorphous masses in the cytoplasm. Thickened cellular envelopes, which are characteristic of keratinized cells, were also observed. These features are characteristic of alpha-type keratinization which is common for other body surfaces. Beta-type keratinization, typical of normal embryonic scales, was not observed even after 6 days of culture with hydrocortisone. Keratinization of embryonic subperiderm of beta-type did not occur either. These ultrastructural observations clearly showed that hydrocortisone induced the alpha-type keratinization. It was also suggested that SCMEpA was closely related to alpha-type keratinization.  相似文献   

19.
RELATION OF TOBACCO MOSAIC VIRUS TO THE HOST CELLS   总被引:10,自引:1,他引:9       下载免费PDF全文
The relation of tobacco mosaic virus (TMV) to host cells was studied in leaves of Nicotiana tabacum L. systemically infected with the virus. The typical TMV inclusions, striate or crystalline material and ameboid or X-bodies, which are discernible with the light microscope, and/or particles of virus, which are identifiable with the electron microscope, were observed in epidermal cells, mesophyll cells, parenchyma cells of the vascular bundles, differentiating and mature tracheary elements, and immature and mature sieve elements. Virus particles were observed in the nuclei and the chloroplasts of parenchyma cells as well as in the ground cytoplasm, the vacuole, and between the plasma membrane and the cell wall. The nature of the conformations of the particle aggregates in the chloroplasts was compatible with the concept that some virus particles may be assembled in these organelles. The virus particles in the nuclei appeared to be complete particles. Under the electron microscope the X-body constitutes a membraneless assemblage of endoplasmic reticulum, ribosomes, virus particles, and of virus-related material in the form of wide filaments indistinctly resolvable as bundles of tubules. Some parenchyma cells contained aggregates of discrete tubules in parallel arrangement. These groups of tubules were relatively free from components of host protoplasts.  相似文献   

20.
Summary Locusta epidermal cells accumulate in their cytoplasm various inclusions which give rise to tegumentary patterns of brown spots and lines.Five major types of inclusions are identified. Ultrastructural examination and electron microprobe studies show that types 1, 2 and 3 correspond to successive steps of concentric pigment and mineral deposition on a matrix. Type 3 is the richest in ommochromes (acridiommatins 1 and 2), and mineralized with calcium phosphate. Type 4 is characterized by pigment and mineral disappearance, which in type. 5 are substituted by uric microcrystals. From the end of the 4th instar to the beginning of the imaginal life, three generations of inclusions are observed to succeed each other in the different epidermal cells. Tergal, pleural and sternal areas are characterized by the morphology and biochemical composition of the inclusions they accumulate. Despite cellular asynchronism, ecdysis is accompanied by a phase of pigment and cation elimination followed by the storage of uric microcrystals.Abbreviations L larval instar (numbered I to V) Abbreviations used in Figs 2, 3 and 4 B basal membrane - Cu cuticle - E epidermis - Gly glycogen - Ly lysosome - M muscle cell - N nucleus - P pigment (ommochrome) granule - SC secretory cell - tu microtubule - Ur uric acid microcrystal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号