首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila melanogaster tu bw larvae melanotic tumors form as a result of a cell-mediated immune response involving the encapsulation and melanization by hemocytes of portions of the caudal adipose tissue. The tissue-specific encapsulation response is not due to the disintegration of the basement membrane surrounding the adipose tissue as is reported to be the case in other melanotic mutants. Prior to encapsulation large numbers of hemocytes appear in the circulation and begin to differentiate into flattened cells termed lamellocytes. This transformation occurs at a time when changes are noted within the adipose cells. The localized accumulation of blood cells near intact basement membrane suggests that abnormally developing adipose cells acquire altered molecular surfaces or release substances to which the hemocytes respond. The initial reaction of the hemocytes with the adipose tissue is cell lysis, and this is rapidly followed by the aggregation of numerous additional blood cells which eventually cohere to one another to form a multilayered capsule. What little evidence there is of disintegration of the basement membrane occurs only after hemocytes have lysed at the surface, and other blood cells begin to invade the adipose tissue. Melanization occurs first in the intercellular spaces along the plasma membranes of the lysed cells, and progresses from the innermost layers toward the periphery of the encapsulating cells. Since the changes observed in the hemocytes and adipose cells are precocious, occurring to a lesser degree later in normal development, the initial effect of the genetic mutation in tu bw larvae may be an endocrine dysfunction which causes an asynchronous and abnormal development of the caudal adipose tissue and/or the hematopoietic organs.  相似文献   

2.
Molluscs are invertebrates of great relevance for economy, environment and public health. The numerous studies on molluscan immunity and physiology registered an impressive variability of circulating hemocytes. This study is focused on the first characterization of the circulating hemocytes of the freshwater gastropod Pomacea canaliculata, a model for several eco-toxicological and parasitological researches.Flow cytometry analysis identified two populations of hemocytes on the basis of differences in size and internal organization. The first population contains small and agranular cells. The second one displays major size and a more articulated internal organization. Light microscopy evidenced two principal morphologies, categorized as Group I (small) and II (large) hemocytes. Group I hemocytes present the characteristics of blast-like cells, with an agranular and basophilic cytoplasm. Group I hemocytes can adhere onto a glass surface but seem unable to phagocytize heat-inactivated Escherichia coli. The majority of Group II hemocytes displays an agranular cytoplasm, while a minority presents numerous granules. Agranular cytoplasm may be basophilic or acidophilic. Granules are positive to neutral red staining and therefore acidic. Independently from their morphology, Group II hemocytes are able to adhere and to engulf heat-inactivated E. coli. Transmission electron microscopy analysis clearly distinguished between agranular and granular hemocytes and highlighted the electron dense content of the granules. After hemolymph collection, time-course analysis indicated that the Group II hemocytes are subjected to an evident dynamism with changes in the percentage of agranular and granular hemocytes. The ability of circulating hemocytes to quickly modify their morphology and stainability suggests that P. canaliculata is endowed with highly dynamic hemocyte populations able to cope with rapid environmental changes as well as fast growing pathogens.  相似文献   

3.
Histological response of lobsters to injection of Aerococcus viridans var. homari, cause of gaffkemia, was followed over a 14-day period. Salient features in infected lobsters, Homarus americanus, were: aggregations of hemocytes occurring in hemal spaces throughout the tissues and increasing in number and size with time; the early phagocytosis of bacteria by the system of fixed phagocytes (FPs) present in hemal spaces of the hepatopancreas; and premature release of differentiating hemocytes from the hemopoietic tissue, so that by 14 days that tissue consisted mainly of large stem cells. Mass release of differentiating hemocytes presumably occurred to replace hemocytes lost from the circulation by their incorporation into aggregations or by lysis of individual cells ruptured through the pressure of phagocytized bacteria that were multiplying in them. Bacteria and their remains were present in FPs at 2 days but not visible in single or aggregated hemocytes until 6 days, when free bacteria were also present in the hemolymph. By 6 days, all bacteria, whether phagocytized or free, appeared normal and were surrounded by nonstaining halos that extended well beyond the stainable capsular material. As predicted earlier in physiological studies, gaffkemia is a nontoxic, noninvasive bacteremia. There was hemal stasis and consequent injury in the antennal gland due to free and aggregated hemocytes that occluded hemal spaces of that organ, but other tissues and organs appeared normal except for depletion of glycogen. Aggregations of hemocytes were present in lobsters 2 and 12 days after injection of a nonpathogenic, Gram-negative bacterium, Pseudomonas perolens. Unlike the case with gaffkemia, necrotic hemocytes were common in the aggregations, presumably in response to damage by endotoxin. A further difference was that aggregations were common in the heart of P. perolens-injected lobsters but rare in the heart of gaffkemic lobsters. Bacteria were not seen in hemolymph, hemocytes, or other cells of P. perolens-injected lobsters.  相似文献   

4.
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated.In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components.  相似文献   

5.
The pathology of pink shrimp, Penaeus duorarum, infected with the microsporidians Thelohania duorara, Agmasoma penaei, and Pleistophora sp. was described. Infections of T. duorara were widespread in most tissues; spores were located throughout the hemocoel, at the periphery of all striated muscle bundles, and in muscle and connective tissue surrounding the digestive tract. A. penaei infections invaded only dorsal abdominal muscles, muscles adjacent to blood vessels, and ovaries. Infected muscles and ovaries were eventually completely destroyed. Masses of A. penaei spores were often engulfed by hemocytes. Pleistophora sp. infected the interior of all striated muscles. Infected muscles were never completely destroyed but were often atrophied.  相似文献   

6.
The injection of live Bacillus thuringiensis (with the culture medium) into the hemocoel of male adults of Locusta migratoria results in a significant fall of the number of circulating hemocytes followed 2 days later by a sharp increase of the hemocyte figure. Identical doses of washed live bacteria have the same effect on the hemogram, whereas neither culture medium deprived of the bacteria by filtration nor heatkilled bacteria modify the hemocyte number. Injection of isolated β-exotoxin of B. thuringiensis in nonlethal concentrations remain without effect on the hemogram.Morphological studies show that the injected bacteria are essentially taken up by the reticular (phagocytic) cells of the hemocytopoietic tissue, leading to a necrotic evolution of many of these cells. Necrotic zones are rapidly encapsulated by granular hemocytes.One to two days after the injection, the hemocytopoietic tissue shows signs of considerable hypertrophy: both the polymorphous reticular cells and the maturing blood clusters become notably more numerous.The modifications observed in the hemocytopoietic tissue partly explain the alterations of the hemogram after injection of B. thuringiensis.  相似文献   

7.
In Necturus maculosus the organization of the interstitial tissue varies according to the stage of spermatogenesis. Leydig cells at various stages of differentiation and myoid cells are always present in this tissue. The Leydig cells are undifferentiated at all phases of germ cell activity and only hypertrophy following spermiation and degeneration of Sertoli cells. These Leydig cells are structurally analogous to mammalian Leydig cells. They do not form part of the lamina propria of the seminiferous lobules and hence cannot be referred to as lobule-boundary cells previously described in the urodele testis (Lofts, '74). When the Leydig cells hypertrophy, numerous unmyelinated axons appear in the interstitial tissue. These axons, often devoid of Schwann-cell cytoplasm, occur in close proximity to Leydig cells. Because the levels of both Substance P and neurotensin increased in the testis of Necturus maculosus as Leydig cells differentiated, we concluded that these neural elements may regulate Leydig-cell function locally, through the release of neuropeptides.  相似文献   

8.
Summary The organization of testicular interstitial tissue of the spinifex hopping mouse, Notomys alexis differs from that of other rodents. It comprises between 10.3% and 17.3% (average 15.0%) of the total testicular volume, and is variable in its organization both at different locations within the testis of the one animal and among different individuals. Abundant, closely packed Leydig cells are usually present; however, in some regions large, thick-walled blood vessels and extensive peritubular lymphatic spaces, often lacking an endothelium adjacent to the Leydig cells, are also prominent. The Leydig cells in contact with the large blood vessels and lymphatics, unlike those in regions where lymph is sparse, are not densely packed and sometimes contain numerous lipid droplets. Ultrastructure of Leydig cells is typical of steroid-producing cells; however, mitochondria are often extremely large, unusual in shape or bizarely arranged in relation to one another. Also electrondense bodies displaying a paracrystalline-like internal structure of parallel, electron-dense filaments arranged in a lattice pattern occur in the cytoplasm of many cells. The significance of these unusual ultrastructural features and the organization of the interstitial tissue remain to be determined conclusively, but may relate to steroid synthesis, secretion and uptake.  相似文献   

9.
比较了几种常见血细胞培养基(L-15、2×L-15、3×L-15、M199和RMPI-1640)对中华绒螯蟹(Eriocheir sinensis)血细胞原代培养中细胞形态以及存活率的影响,以及在筛选获得的最佳培养基中添加不同比例胎牛血清(FBS)(0%、5%、10%和15%),进一步观察了血清对中华绒螯蟹血细胞培养效果的比较。结果表明,3×L-15培养基培养效果较好,所培养的细胞形态相对完整,数量较多,培养至96 h时血细胞存活率仍大于60%;而其他4种培养基效果较差,培养12 h存活率均低于50%,且细胞形态结构变化明显。以3×L-15培养基为基础,添加不同比例胎牛血清后发现,对细胞存活有显著影响,存活率明显降低。因此,不添加血清的3×L-15培养基对中华绒螯蟹血细胞的生长较为适宜。  相似文献   

10.
The fine structure of the hemopoietic tissue and its detailed reticular organization in the mealworm beetle, T. molitor were examined using light and scanning electron microscopes. The major hemopoietic tissues in the abdomen were located on the upper surface of the dorsal diaphragm which continuous over the ventral wall of the heart. Histologic characteristics of this hemopoietic tissues are dense clusters of cells. They are irregular in outline and are not surrounded by any connective tissue sheath. The hemopoietic tissue of this insect is consisted of three cellular components which are the reticular cells, hemocytic stem cells and several kinds of mature hemocytes. The reticular cells had numerous cytoplasmic processes and forming a complex network. The stem cells give rise to differentiating hemocytes of the different cell lineages. Mature hemocytes within this hemopoietic tissue are originated from the stem cells and differentiated into several types of hemocytes including prohemocytes, plasmatocytes, and granulocytes.  相似文献   

11.
The green-lipped mussel Perna viridis is distributed widely in the estuarine and coastal areas of the Indo-Pacific region and extensively cultured as an inexpensive protein source. Morphology and immunological activities of hemocytes of P. viridis were investigated using flow cytometry and light and electron microscopy. Three major types of hemocytes were identified in the hemolymph, including dense-granulocyte, semi-granulocyte (small and large size) and hyalinocyte. Other hemocytes, which occurred in low numbers, included granulocytes with different electron-dense/lucent granules and hemoblast-like cells. Based on flow cytometry, two subpopulations were identified. Granulocytes were larger cells, and the more abundant, containing numerous granules in the cytoplasm, and hyalinocytes were the smaller and less abundant with the fewest granules. Flow cytometry revealed that the granulocytes were more active in cell phagocytosis, contained the higher lysosomal content, and showed higher esterase activity and reactive oxygen species (ROS) generation compared with hyalinocytes. Immune functions assessed by the flow cytometry indicated that the granulocytes were the main hemocytes involved in the cellular defence in P. viridis.  相似文献   

12.
Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn2+, an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3 h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn2+, and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn2+ increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn2+ also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster.  相似文献   

13.
QX disease is a fatal disease in Sydney rock oysters caused by the protozoan parasite Marteilia sydneyi. The current study investigates the phagocytosis of M. sydneyi by Sydney rock oyster hemocytes. It also compares the in vitro phagocytic activities of hemocytes from oysters bred for QX disease resistance (QXR) with those of wild-type oysters. After ingestion of M. sydneyi, hemocyte granules fused with phagosome membranes and the pH of phagosomes decreased. Significantly (p = <0.05) more phagosomes in QXR hemocytes showed obvious changes in pH within 40 min of phagocytosis, when compared with wild-type hemocytes. Phenoloxidase deposition was also evident in phagosomes after in vitro phagocytosis. Most importantly, ingested and melanised M. sydneyi were detected in vivo among hemocytes from infected oysters. Overall, the data suggest that Sydney rock oyster hemocytes can recognise and phagocytose M. sydneyi, and that resistance against QX disease may be associated with enhanced phagolysosomal activity in QXR oysters.  相似文献   

14.
The hemocytes of two palaemonids and one penaeid were characterized using light and transmission electron microscopy (TEM). The blood cells in all three species were classified as hyaline hemocytes (HH), small granule hemocytes (SGH), and large granule hemocytes (LGH). The HH are unstable hemocytes with a characteristic high nucleo-cytoplasmic ratio. Their cytoplasm appears particularly dense and has from few to numerous granules that often exhibit a typical striated substructure. In both palaemonids, the great majority of the HH contain numerous granules, whereas in Penaeus paulensis, a small number of these cells have few or no granules. The cytoplasm of some HH of the penaeid exhibits typical electron-dense deposits. The granulocytes, LGH and SGH, contain abundant electron-dense granules that are usually smaller in the SGH. In both hemocyte types, the cytosol, but not the granules, is rich in carbohydrates (PAS positive) and numerous vesicles contain acid phosphatase (Gomori reactive). In all studied shrimps, the SGH and LGH were actively phagocytic when examined on blood cell monolayers incubated with the yeast Saccharomyces cerevisiae. A few mitotic figures (less than 1%) were observed in the granulocytes of P. paulensis, but not in the palaemonids. SGH is the main circulating blood cell type in both palaemonids, whereas HH is predominant in the penaeid. Based on morphological and functional features, it appears that the hyaline and the granular hemocytes of the three shrimp species represent different cell lineages. J. Morphol. 236:209–221, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Galleria mellonella and Pieris brassicae larvae were injected with a standardized dose of killed Bacillus cereus and other bacteria and the reactions of hemocytes followed in the first 24 hr by dissection and histology. Nodules formed in all insects injected with nonpathogens, but a pathogen, Staphylococcus aureus, failed to provoke this reaction. Within 5 min, clumps consisting of granular hemocytes, plasmatocytes, and bacteria were found attached to the internal surfaces of the insects. In the following hours, the cells comprising the clumps broke down and merged with a melanizing acellular substance, and the necrosing masses became encapsulated by plasmatocytes to form mature nodules. The role of granular hemocytes in the formation of the initial cell/bacteria aggregates is discussed along with the possible importance of nodules to the cellular defense reactions of insects.  相似文献   

16.
The dampwood termite, Zootermopsis angusticollis is known to generate humoral immune responses to the entomopathogenic fungus Metarhizium anisopliae. However, little is known about how the termite's cellular immune system reacts to fungal infection. To test the effect of conidia exposure on cellular immunity, we quantified the number and types of hemocytes in the hemolymph of naïve nymphs and compared their circulating counts with those of nestmates exposed to 0, 2 × 103, 2 × 106 or 2 × 108 conidia/ml doses. These termites were then bled and their hemocytes counted on days 1, 2, 3, 4, 7 post-exposure. Our results show, first, that naïve Z. angusticollis nymphs have three different blood cell types tentatively identified as granular hemocytes, prohemocytes and plasmatocytes. In these individuals, plasmatocytes were on average 13.5 and 3.3 times more numerous than granular hemocytes and prohemocytes, respectively. Second, a full factorial general linear analysis indicated that hemocyte type, time elapsed since conidia exposure and conidia dosage as well as all their interactions explained 43% of the variability in hemocyte density. The numbers of prohemocytes and particularly plasmatocytes, but not granular hemocytes, appear to be affected by the progression of disease. The decline in hemocyte numbers coincided with the appearance of hyphal bodies and the onset of “sluggish” termite behavior that culminated in the insect's death. Hemocyte counts of infected males and females were affected to the same extent. Hence, M. anisopliae overtakes the cellular immune responses of Z. angusticollis mainly by destroying the host's most abundant hemocyte types.  相似文献   

17.
Trehalose in ectoderms functions in energy metabolism and protection in extreme environmental conditions. We structurally characterized trehalose 6-phosphate synthase (TPS) from hemocytes of the blue crab, Callinectes sapidus. C. sapidus Hemo TPS (CasHemoTPS), like insect TPS, encodes both TPS and trehalose phosphate phosphatase domains. Trehalose seems to be a major sugar, as it shows higher levels than does glucose in hemocytes and hemolymph. Increases in HemoTPS expression, TPS enzyme activity in hemocytes, and hemolymph trehalose levels were determined 24 h after lipopolysaccharide challenge, suggesting that both TPS and TPP domains of CasHemoTPS are active and functional. The TPS gene has a wide tissue distribution in C. sapidus, suggesting multiple biosynthetic sites. A correlation between TPS activity in hemocytes and hemolymph trehalose levels was found during the molt cycle. The current study provides the first evidence of presence of trehalose in hemocytes and TPS in tissues of C. sapidus and implicates its functional role in energy metabolism and physiological adaptation.  相似文献   

18.
《Developmental biology》1997,191(1):118-130
Glial cell differentiation inDrosophila melanogasterrequires the activity ofglide/gcm(glial cell deficient/glial cell missing). The role of this gene is to direct the cell fate switch between neurons and glial cells by activating the glial developmental program in multipotent precursor cells of the nervous system. In this paper, we show thatglide/gcmis also expressed and required in the lineage of hemocytes/macrophages, scavenger cells that phagocytose cells undergoing programmed cell death. In addition, we show that, as for glial cells,glide/gcmplays an instructive role in hemocyte differentiation. Interestingly, it has been shown that in the development of the fly adult nervous system the role of scavenger cells is played by glial cells. These data and our findings on the dual role ofglide/gcmindicate that glial cells and hemocytes/macrophages are functionally and molecularly related.  相似文献   

19.
20.
Host-pathogen interaction models in aquatic species are useful tools for understanding the pathogenicity of diseases in cultured and wild populations. In this study we report the differential in vivo response of soft-shell clam (Mya arenaria) hemocytes against two strains of Vibrio splendidus. Responses were measured 24 h after injecting into the posterior adductor muscle either an endemic wild-type strain (7SHRW) or a strain associated with oyster mortalities (LGP32-GFP). Changes in hemocyte structure (percentage of rounded cells) were assessed microscopically. Changes in adherence and hemocyte numbers were analyzed by flow-cytometric cell counting. Increased percentages of rounded cells were found in response to both strains. However, values from the group infected with LGP32-GFP were significantly higher (p < 0.01) than with 7SHRW. The cell adherence was markedly diminished (p < 0.001) by LGP32-GFP whereas 7SHRW did not change it significantly. Increased numbers of hemocytes (p < 0.001) were induced by LGP32-GFP, while no significant changes were found after infection with 7SHRW. These results show the regulatory capacity of soft-shell clams hemocytes to perform specific responses against different strains of V. splendidus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号