首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

2.
Injection of the juvenile hormone analog (JHA) methoprene into day 3, fifthinstar larvae of Bombyx mori induced developmental arrest. Feeding activity declined, and the larvae remained as larvae for more than 2 weeks, after which they died. After JHA injection, the hemolymph ecdysteroid titer was low, and the prothoracic glands were almost inactive for 7 days. During this period, prothoracic glands were stimulated by prothoracicotropic hormone (PTTH) in vitro, indicating that JHA did not inhibit the competence of the glands to respond to PTTH. When brain-corpora cardiaca-corpora allata complexes were removed from intact fifth-instar larvae on day 4, the prothoracic glands became autonomously active and produced enough ecdysone for pupation. When PTTH injections were given to larvae previously injected with JHA (7 days before), the larvae recovered feeding activity, purged their guts, and pupated. Injections of 20-hydroxyecdysone into larvae that had been injected with JHA 7 days earlier induced larval molting. These results suggest that JHA affects both the brain and the prothoracic gland.  相似文献   

3.
Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) is a solitary endoparasitoid of Heliothis virescens. The lateral oviducts of the female parasitoid contain a particulate suspension called calyx fluid. The particles in calyx fluid are a polydnavirus (CsV) which, when injected into last-instar H. virescens, stimulates degeneration of the host's prothoracic glands. In order to determine if CsV-induced degeneration is specific to prothoracic glands, last-instar H. virescens larvae were injected with C. sonorensis calyx fluid. After 4 days, a variety of host tissues were dissected from both calyx fluid-injected and uninjected control larvae and fixed for transmission electron microscopy. Prothoracic glands from injected larvae were ultrastructurally degenerated by 4 days post-injection, whereas control glands remained intact. Other tissues from calyx fluid-injected larvae (tracheal epithelia, corpora allata, Malpighian tubules, fat body, skeletal muscle, and the brain) showed no signs of ultrastructural degeneration or gross abnormalities as compared with control tissues. These observations suggested that CsV-induced degeneration is specific to the host's prothoracic glands.  相似文献   

4.
When embryonic testes 1 or 2 days before hatching were transplanted into 5 kinds of hosts (5th instar larvae, “fresh” pupae just after pupation, isolated pupal abdomens and 3-day-old pupae with and without their original corpora allata), the testes transplanted into 5th instar larvae grew most conspicuously and spermiogenesis began in many cysts. A few spermatidal cysts were observed in the testes transplanted into fresh pupae. No signs of maturation were observed in the testes transplanted into other hosts. It is concluded that prothoracic gland hormone might be responsible for the precocious maturation of young testes. On the other hand, the initiation of spermiogenesis was delayed, in comparing with controls, in the 3rd instar larval testes as follows: the testes transplanted into 3-day-old pupae, the testes transplanted into isolated pupal abdomens together with adult corpora allata and the testis into which corpus allatum of a 3rd instar larva was inserted. It is concluded that corpora allata hormone exerts an inhibitory effect on spermatogenesis.  相似文献   

5.
The sensitivity of the prothoracic glands to juvenile hormone and prothoracicotropic hormone (PTTH) of penultimate (5th)-instar larvae of Mamestra brassicae was compared with that of the same-instar larvae destined for pupal ecdysis by allatectomy. The activity of the prothoracic glands was assessed using either moulting of isolated abdomens or ecdysone radioimmunoassay. Juvenile hormone application immediately after neck-ligation (which removes brain-corpora cardiaca-corpora allata complex) prevented prothoracic gland function in larvae at all stages. When larvae were allatectomized 12 hr after ecdysis, followed by neck-ligation at different times and given juvenile hormone immediately, the hormone inhibited the prothoracic glands of young larvae, but activated the prothoracic glands from day-5 or older larvae. Juvenile hormone I, juvenile hormone II and methoprene activated the prothoracic glands, but juvenile hormone III was relatively ineffective. Brain implantation instead of juvenile hormone application led to activation of the prothoracic glands at all stages.Allatectomy thus caused changes leading to metamorphosis including a transformation of the prothoracic glands from ‘larval’ to ‘pupal’ type. After this change these prothoracic glands were able to respond not only to PTTH but also to juvenile hormone just as in last-instar larvae.  相似文献   

6.
In the penultimate-larval instar, the total volume of the prothoracic gland and the activities of some oxidative mitochondrial enzymes (cytochrome oxidase, NADH: cytochrome c oxidoreductase, succinate: cytochrome c oxidoreductase) undergo cyclic variations associated with larval growth. These specifically larval-larval growth cycles are absent in the prothoracic glands of normal last-instar larvae. Here the cycles can be induced artificially by implantation of brain or corpora cardiaca-allata complexes or, by exogenous application of juvenile hormone. The smallest size of the prothoracic gland in relation to the size of the body, as well as the minimal activity of all the three mitochondrial enzymes in the gland, have been found exactly at the moment of the pre-pupal peak of ecdysteroid in the body. The possibility that the prothoracic glands alone can synthetize ecdysteroid during the peak is questioned.  相似文献   

7.
Juvenile hormone synthesis by adult female corpora allata was inhibited following implantation into final-larval-instar males; inhibition was prevented by decapitation of the larval hosts on day 11 (prior to the head critical period for moulting), but not by decapitation on day 13. Implantation of one larval protocerebrum restored inhibition of implanted corpora allata, demonstrating that the brain releases an inhibitory factor. Corpora allata implanted into larvae decapitated on day 11 were inhibited by injections of 20-hydroxyecdysone. Since treatment of corpora allata with 20-hydroxyecdysone in vitro did not inhibit juvenile hormone synthesis, ecdysteroids probably act indirectly on the corpora allata. Juvenile hormone synthesis and haemolymph ecdysteroid concentration were measured following implantation of corpora allata along with two larval brains into larval hosts. Brain implantation did not affect ecdysteroid concentration, but did inhibit juvenile hormone synthesis, even in animals with low haemolymph ecdysteroid concentration. Incubation with farnesoic acid stimulated juvenile hormone synthesis by corpora allata from males early in the final larval stadium, but not after day 8, showing that one of the final two reactions of juvenile hormone synthesis is rate-limiting in larval corpora allata at this stage. Adult female corpora allata which had been humorally inhibited by implantation into larvae were stimulated by farnesoic acid.  相似文献   

8.
The activation factor I, one of the two prothoracotropical factors obtained by gel filtration techniques from extracts of corpora cardiaca of cockroaches, induces a significant stimulation of uridine incorporation into the RNA of cultured larval prothoracic glands of Periplaneta americana and Galleria mellonella. This effect shows a clear dose-response relationship. Results obtained with actinomycin D permit the conclusion that increase of the uridine incorporation reflects a true stimulation of RNA synthesis of these glands. α-Amanitin does not block the stimulation of the total RNA induced by the activation factor I.The activation factor I has no influence on the uridine incorporation in other tested larval tissues and organs of cockroaches of the same age (brains, corpora cardiaca-corpora allata complexes, salivary glands, muscle tissue, midgut, fat body tissue).A close relationship may be suggested from this specific action of activation factor I on the RNA synthesis of prothoracic glands with α-ecdysone synthesis specifically proved in these organs.  相似文献   

9.
It has been shown that only third instar larvae of Macrotermes michaelseni have the competence to differentiate into presoldiers under the influence of juvenile hormone analogue (JHA). The timing of events leading to presoldier formation was independent of JHA dose above the threshold. Further studies with homogeneous groups of third instar larvae of different ages showed that only larvae of a certain age (0–6 days) could respond to topically applied JHA to produce presoldiers and intercastes (intermediate forms). Older larvae did not respond, hence, 0–6 days interval is the competence period for presoldier differentiation in this species. It seems also that the corpora allata of those individuals which differentiate into presoldiers become activated during the competence period, possibly by the parents or other means.  相似文献   

10.
The organization of the retrocerebral gland system in larvae of six species of Lepidoptera belonging to the family Pyralidae was compared using light and electron microscopy. We have demonstrated for the first time the presence of separate corpora cardiaca and corpora allata in the following economically important borers: the southwestern corn borer, Diatraea grandiosella, the sugar cane borer, Diatraea saccharalis, the European corn borer, Ostrinia nubilalis, and the rice stalk borer, Chilo plejadellus. In these species a long nervus corporis allati (ca. 300 μm) runs from the corpus cardiacum to the corpus allatum which is attached to the duct of the mandibular gland.The identity of the corpora allata of D. grandiosella was confirmed by transplantation. Corpora allata removed from pre-diapausing larvae and implanted into the haemocoele of early last stage non-diapausing larvae led to a high incidence of supernumerary larval rather than pupal ecdyses.  相似文献   

11.
Morphometric studies were made on corpora allata of the cockroach Diploptera punctata from animals in which increasing gland size is not coupled to hormone synthesis (ovariectomized mated females; last-instar larvae) and in which gland size is coupled to hormone synthesis (normal mated and virgin females; penultimate-instar larvae). Cell number, gland volume, and juvenile hormone synthesis were measured. From electron micrographs, nuclear, cytoplasmic, and extracellular volumes; and cell membrane area were calculated; and fine structure described. Low-activity glands of ovariectomized mated females resembled high-activity glands from mated females in high cell number, large overall and cytoplasmic volume, and low nuclear-cytoplasmic ratio; they differed in having organelles typical of low-activity glands, mitochondria with dense matrices and large whorls of smooth endoplasmic reticulum. Inactive lastinstar larval glands resembled mated ovariectomized, female glands in increased cell number and organelles characteristic of inactive glands; however, their nuclearcytoplasmic volume ratio was much higher. Penultimate cytoplasmic volume ratio was much higher. Penultimate larval glands with high activity per cell resembled active glands of normal mated females. Ovariectomy did not change morphometric parameters of virgin female glands; thus mating results in increase in size of adult female glands whereas the growing ovary is needed for changes in mitochondria and endoplasmic reticulum associated with high juvenile hormone synthesis.  相似文献   

12.
In recessive trimolter (rt) mutants of the silkworm, Bombyx mori, that have four larval instars rather than five larval instars of normal B. mori, a decrease after a small increase in the hemolymph ecdysteroid titer during the early stages of the last (fourth) larval instar appeared to be a prerequisite for larvae to undergo precocious metamorphosis. The present study was carried out to investigate the possible mechanism underlying this decrease in the ecdysteroid titer. It was found that juvenile hormone (JH) biosynthetic activity of the corpora allata (CA) increased during the first day of the last larval instar, but its absolute JH biosynthesis activity was relatively lower compared to that of normal fourth-instar larvae in tetramolters. This lowered JH biosynthetic activity appeared to be related to a decrease in prothoracic gland ecdysteroidogenesis during the second day of the last instar, because hydroprene application prevented this decrease in prothoracic gland ecdysteroidogenesis, leading to the induction of a supernumerary larval molt. The in vitro incubation of prothoracic glands with hydroprene showed that hydroprene did not directly exert its action on prothoracicotropic hormone (PTTH) release. Further study showed that the application of hydroprene enhanced the competency of the glands to respond to PTTH. From these results, it was supposed that the lowered JH biosynthesis of the CA during the first day of last instar in rt mutants was related to decreased ecdysteroidogenesis in the prothoracic glands during the second day, thus playing a role in leading to precocious metamorphosis.  相似文献   

13.
《Insect Biochemistry》1987,17(7):955-959
The timing and magnitude of the pupal commitment peak in the hemolymph ecdysteroid titer of fifth instar Manduca sexta larvae are controlled by the combined effects of prothoracicotropic hormone (PTTH), a prothoracic gland-stimulating factor present in the hemolymph, and the biosynthetic competence of the prothoracic glands themselves. The present data indicate those individual effects are coordinated by juvenile hormone (JH): (1) Treatment of larvae with the JH analog (7S)-hydroprene prevents the normal precommitment drop in the titer of the stimulatory factor; (2) treatment of larvae with (7S)-hydroprene suppresses in a dose- and time-dependent manner the biosynthetic competence of the prothoracic glands; and (3) (7S)-hydroprene acts directly on the brain to inhibit the release of PTTH in vitro. Thus, during Manduca development, a drop in the JH titer early in the fifth instar results in a rapid drop in the titer of the stimulatory factor, the gradual acquisition by prothoracic glands of biosynthetic competence, and lastly, the gated release of PTTH into the hemolymph. The resulting increase in ecdysone synthesis by the prothoracic glands gives rise to the small peak in the ecdysteroid titer that drives pupal commitment.  相似文献   

14.
The endocrine mechanisms that regulate prothoracic gland (PG) activity in early stages of final larval instar of the silkworm Bombyx mori were investigated using a newly developed long-term cultivation system of the gland. The PGs dissected from day-0 fifth instar larvae did not secrete detectable amounts of ecdysone for the first 24 h in culture but started secretion within the next 2 days. The amount of secreted ecdysone increased day by day. When day-0 PGs were co-cultivated with corpora allata, however, they remained inactive for at least 8 days. PGs dissected from 1-day younger larvae (day-3 fourth instar larvae) secreted ecdysone for the first 24 h but stopped secretion for the next 24 h, followed by recovery of ecdysone secretory activity. By contrast, PGs from day-1 fourth instar larvae remained active throughout a cultivation period without any sign of inactivation. However, when the same glands were exposed to a high titer of 20-hydroxyecdysone for the second 24h in culture, they gradually lost their activity. These results indicate that PGs of fourth instar larvae are inactivated by ecdysteroid through a negative feedback mechanism and that thus inactivated PGs spontaneously recover ecdysone secretory activity in the early fifth instar unless inhibited by juvenile hormone.  相似文献   

15.
The role of the brain in inhibiting the action of corpora allata in diapausing short-day females was investigated by transplantation experiments. The function of the transplanted glands was evaluated by oviposition. Active glands from long-day females remained active for a long period of time after transplantation into short-day females, although in situ corpora allata were inhibited shortly after the transfer of females from long to short day. Moreover, inactive glands from short-day females became active after transplantation into other short-day females. In contrast, corpora allata remained inhibited when transplanted together with the brain in the neuroendocrine complex (brain-corpora cardiaca-corpus allatum) where the nervous connections between the brain and corpus allatum remained intact. It is therefore suggested that short-day conditions inhibit corpora allata via nervous connections with the brain.  相似文献   

16.
We have previously reported that the absence of prothoracicotropic hormone (PTTH) signal transduction during the early last larval instar of Bombyx mori plays a role in leading to very low ecdysteroid levels in the hemolymph, inactivation of the corpora allata, as well as larval-pupal transformation. In the present study, adenylate cyclase was characterized in crude preparations of prothoracic gland cell membranes in an effort to localize the cause of refractoriness to PTTH. It was found that cyclase activity of the prothoracic glands from the day 6 last instar showed activation responses to fluoride, a guanine nucleotide analogue, as well as calmodulin (CaM) in dose-dependent fashions. The additive effects of day 5 prothoracic gland adenylate cyclase stimulation by fluoride and CaM imply that there may exist Gs protein-dependent and CaM-dependent forms of adenylate cyclase. For day 1 last instar prothoracic glands, which showed no response to stimulation by PTTH in either cAMP generation or ecdysteroidogenesis, adenylate cyclase activity exhibited far less responsiveness to Ca(2+)/CaM than did that from day 5 glands. These findings suggest that day 1 prothoracic glands may possess some lesions in the receptor-Ca(2+) influx-adenylate cyclase signal transduction pathway and these impairments in PTTH signal transduction may be, at least in part, responsible for decreased ecdysteroidogenesis.  相似文献   

17.
Spontaneous cellular differentiation (glandular units appearance with a well-defined duct) is observed in larval integument of Schistocerca cultured in an hormone free medium. Hormonal stimulations modify the expression of this phenomenon, particularly the frequency of new elaborated duct cells belonging to secretory units. The most effective factor is supplied by the prothoracic glands. Complete secretory units can be observed but the glandular cells are in an undifferentiated and unfunctional state. They appear active if the corpora allata act after the prothoracic glands. Corpora allata alone or synthetic juvenile hormones have an inhibitory effect. The addition of alpha-ecdysone permits only cellular divisions, a preliminary and indispensable condition for ulterior differentiation. Between cuticles deposited with beta-ecdysone, new formed ducts take place in the theorical imaginal exuvia. These observations prove that the elaboration and the activity of imaginal glandular units are conditioned by the larval hormonal context: by contrast, sex dimorphism is only a genetic dependant process.  相似文献   

18.
Juvenile hormone or ZR512 applied topically to day-5, fifth-instar, neck-ligated Manduca sexta larvae results in the acceleration of pharate pupal development when compared to neck-ligated, untreated larvae. This occurs as a result of an increase in the haemolymph ecdysteroid titre. Juvenile hormone, therefore, appears to stimulate ecdysone synthesis by the prothoracic glands of these animals, but not directly as shown by in vitro analysis. When ecdysone synthesis by the prothoracic glands of these ZR512- or juvenile hormone-treated animals was analyzed in vitro, increased gland activity was demonstrated but this did not occur until at least 2 days after treatment. This time lag in response supports the concept of an indirect stimulation of the prothoracic glands. Incubation of fat body from these ZR512- or juvenile hormone-treated, neck-ligated, larvae in 19AB culture medium revealed that the resulting pre-conditioned medium was capable of stimulating prothoracic glands in vitro up to 9-fold in a dose-dependent manner. A developmental profile was generated of the amount of this stimulatory factor released into the medium by fat body of untreated larvae representing each day of the last instar, and revealed that maximal release occurred with fat body from day-9 animals. The alterations in the amount of factor release by the fat body during larval-pupal development roughly correlated with the juvenile hormone titre and suggested a possible role for this factor in the regulation of the ecdysteroid titre. In contrast to the prothoracicotropic hormone, the fat body stimulatory factor is heat labile and has an apparent mol. wt in the 30,000 Dalton range. These data, particularly the kinetics of prothoracic gland stimulation, suggest that the factor may be a protein transporting a substrate for ecdysone biosynthesis to the prothoracic glands.  相似文献   

19.
《Insect Biochemistry》1986,16(1):149-155
Regulation of the haemolymph titres of ecdysteroids and the juvenile hormones (JH) during larval-pupal development of the tobacco hornworm, Manduca sexta, involves the interendocrine control of the synthesis of each hormone by the other. Temporal relationships between the ecdysteroid titre peaks in the fourth and early fifth larval instar and the increases in corpora allata (CA) activity at these times suggests that ecdysteroids are evoking the increases. Incubation of brain-corpora cardiaca-corpora allata (Br-CC-CA) complexes and isolated CA from these stages with 20-hydroxyecdysone (20-HE) revealed that 20-HE stimulates CA activity and that it does this indirectly via the Br-CC. The resulting increase in the JH titre after the commitment (first) peak in the fifth instar stimulates the fat body to secrete a factor which appears to be the same as a haemolymph stimulatory factor for the prothoracic glands. This moiety acts as a secondary effector that modulates the activity of the prothoracic glands and thus the ecdysteroid titre. These findings together have begun to elucidate the mechanisms by which the principal developmental hormones in the insect interact to regulate postembryonic development.  相似文献   

20.
Adult mated females of the viviparous cockroach Diploptera punctata are moderately sensitive to precocenes. Oöcyte growth is inhibited and oviposition is delayed in insects topically treated with precocene II or precocene III. C16 juvenile hormone release by corpora allata of precocene-treated insects is markedly inhibited when compared to corpora allata of acetone-treated controls. Electron microscopy of the corpora allata reveals that precocene treatment results in a disorganisation of the intracellular organelles. Topically applied precocene II reaches a high concentration in the haemolymph (0.5 mM 2 hr after topical application of 250 μg). C16 juvenile hormone release by isolated corpora allata is inhibited by precocenes in vitro; half-maximal inhibition over a 3 hr period is obtained at 0.4 mM precocene II. In vitro inhibition of corpora allata by precocene II concentrations higher than 1 mM rapidly destroys the glands as evidenced by electron microscopy (total disintegration of cellular organelles) and by the virtual cessation of C16 juvenile hormone synthesis by the corpora allata. Inhibition of C16 juvenile hormone release by precocene is time-dependent and is not reversible over the short-term incubation in vitro. This inhibition does not appear to be related to the spontaneous activity of the glands in vitro, and it can be reduced by two epoxidase inhibitors. Precocenes are pro-allatocidins in this species: they are bioactivated within the corpora allata to cytotoxic epoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号