首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasitism by the braconid wasp Apanteles congregatus decreases the effectiveness of the anti-juvenile hormone agents ETB (ethyl 4-[2-{ittert-butyl carbonyloxy}bytoxy]benzoate) and fluoromevalonolactone (FMev) in inducing precocious metamorphosis of Manduca sexta larvae. Topical application of 1–200 μg ETB to parasitized third-instar larvae had no effect on either host or parasite development, whereas doses of 50μg or more ETB applied to unparasitized third-instar larvae caused formation of larval-pupal intermediates after the fourth instar. Parasitism also decreased the effectiveness of 100–200 μg FMev in causing metamorphosis at the moult following its application. In contrast to ETB, FMev disrupted development of the parasitoids. No wasps emerged when preterminal stage hosts were treated with FMev and the hosts formed larval-pupal intermediates. After treatment of terminal stage hosts with FMev, the number of emerging parasitoids was reduced by one-third. Precocene II (100 μg per larvae) had no effect on development of either M. sexta or A. congregatus.  相似文献   

2.
The regulation of juvenile hormone esterase in last-instar diapause and nondiapause larvae of Ostrinia nubilalis was investigated using topically applied juvenile hormone I and a juvenile hormone mimic, methoprene. The influence of the head on juvenile hormone esterase was also investigated. Both juvenile hormone and methoprene caused increases in esterase levels when applied to feeding animals. Neither the hormone nor methoprene was capable of elevating nondiapause esterase activity to levels comparable to those found in untreated prediapause larvae. The esterase levels could be elevated in the larval body, without the head, during prepupal development of nondiapause larvae and in post-feeding diapause larvae. In both cases, juvenile hormone or methoprene induced juvenile hormone esterase activity in head-ligated animals. Topically applied methoprene prolonged feeding and delayed the onset of diapause. When methoprene was applied to larvae that had entered diapause, it disrupted diapause by inducing a moult.  相似文献   

3.
Exposure of early fourth-instar larvae of Aedes aegypti to the juvenile hormone analogue Altosid ZR15® (methoprene) significantly increased the concentration of carbohydrates in the haemolymph of late fourth-instar larvae and reduced the haemolymph carbohydrate concentration of 24-h-old pupae relative to controls. Such treatment also effected a decline in haemolymph amino nitrogen levels of the pupal stage and a depletion of haemolymph proteins in late fourth-instar larvae as well as pupae. Two of nine protein fractions in the haemolymph of larvae were significantly depleted following methoprene treatment. Fourteen soluble protein fractions were present in the haemolymph of control pupae; two of these were missing from the pupae which were treated as larvae with methoprene. A further protein fraction, common to the haemolymph of both treated and control pupae, was significantly reduced in concentration as a consequence of exposure to methoprene. The juvenile hormone analogue impaired the capacity of the fat bodies of late fourth-instar larvae and pupae to synthesise proteins, resulting in a lowered concentration of fat body proteins. Glycogen levels in the fat bodies of treated larvae were significantly lower than in controls and glycogenolysis was suppressed due to an overall depletion of glycogen phosphorylase and, in pupae, a lowered ratio of active: inactive enzyme. The data are consistent with the proposition that the juvenile hormone analogue elicits neuroendocrinological changes in the target insect.  相似文献   

4.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

5.
Parasitism of the tobacco hornworm, Manducasexta, by the braconid wasp Cotesiacongregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid’s emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 μg. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.  相似文献   

6.
ABSTRACT. Previously we have shown that the number of Apanteles congregatus Say (Hymenoptera, Braconidae) larvae developing in Manduca sexta (L.) (Lepidoptera, Sphingidae) larvae that are parasitized in the first instar determines the timing of emergence of the parasites from the host. Here we show that the first larval ecdysis of the wasps occurs after the host ecdyses to the terminal stage, regardless of whether that stage is the host's fourth, fifth or supernumerary sixth instar. Starvation of newly ecdysed terminal stage host larvae prevents emergence of the parasites. When starvation is begun at progressively later times, then an increasing proportion of the hosts have parasites that emerge, suggesting a period of indispensable host nutrition exists during which the host must feed to satisfy the developmental requirements of the parasites. In hosts fed ad libitum , the weight of the host plus its parasites at the time of emergence is positively correlated with the number of parasites developing in the host. When the weight of the parasites alone is subtracted from the weight of the host—parasite complex, the data show that heavily parasitized hosts have a larger host mass than lightly parasitized larvae. In contrast, the wasp larvae, and the adult males and females that develop from them, have lower individual weights after development in heavily parasitized hosts.  相似文献   

7.
The juvenile hormone analogue ZR 515 has specific effects on ecdysone-induced metamorphic differentation of Drosophila cells cultured in vitro. The number of vesicles containing imaginal cuticular structures is reduced to 10% of control levels. Similarly, the differentiation of adult fat body is partly inhibited by ZR 515. The differentiation of adult tubular and fibrillar muscles, however, is not affected. ZR 515 does not inhibit cuticle secretion by tracheal cells and larval epidermal cells.  相似文献   

8.
Vitellogenin in the haemolymph of Locusta migratoria was assayed by rocket immunoelectrophoresis to elucidate aspects of its regulation. In many normal adult females, vitellogenin first appeared on days 5–9, rose quickly to peak levels, and declined before a second vitellogenic cycle; in others, it appeared later and built up more slowly. The timing of first appearance of vitellogenin, and proportions of early and late-developing individuals, differed markedly in groups from the same colony assayed in different years, suggesting effects of both genetic and environmental variation. Average peak levels of vitellogenin were 25–30 mg/ml. After ovariectomy, vitellogenin appeared near the normal time and increased for several weeks to about 300 mg/ml; haemolymph volume also increased greatly, so that the total haemolymph-vitellogenin pool reached about 300 mg/individual, or 100 times the normal amount. After ovariectomy, no cyclicity of vitellogenin accumulation was apparent. These results show that the ovary is not required for stimulation of vitellogenin synthesis, and suggest that normal cycling may depend on inhibition by the mature ovary. Females treated with ethoxyprecocene on day 1 of adult life to inactivate the corpora allata did not produce vitellogenin, but were induced to do so with the juvenile hormone analogue, methoprene. After injection of 150 μg of methoprene in mineral oil, there was one day lag, then vitellogenin increased in the haemolymph to the normal peak level and declined slowly to zero during 5 weeks; after a second injection of methoprene, vitellogenin re-appeared more rapidly, with less lag, reflecting accelerated secondary hormonal stimulation of vitellogenin synthesis in the fat body. Adult males showed no detectable haemolymph vitellogenin even after injection of large doses of methoprene.  相似文献   

9.
Sensitivity to juvenile hormone and to 20-hydroxyecdysone has been investigated during the last-larval stages of Tenebrio molitor. Topical applications of a juvenile hormone analogue (K-421d) showed that the sensitive period, occurring before apolysis, is relatively short (less than 4 days in a 3-week instar) and divided into two phases. Treatment during the first and longest phase induced a delay in development and then an increase in larval moult percentage. Treatment during the second phase induced several abnormal moults (prothetelic larvae and larval-pupal intermediates).Injections of massive doses of 20-hydroxyecdysone (10 μg per animal) also evidenced a period of disturbance of the morphogenetic programme, beginning before pupal apolysis but continuing several days after.Comparison of the sensitive periods to both hormones suggests that a very important and rapid step of the larval-pupal programme change is controlled hormonally just before pupal apolysis.  相似文献   

10.
This paper describes the nature and titre of juvenile hormone at different developmental stages of the Colorado potato beetle, Leptinotarsa decemlineata Say, determined by a selective mass-spectroscopic detection technique, High levels of juvenile hormone III were observed in long-day beetles, whereas low titres occurred in pre-diapause and diapause adults. The level of juvenile hormone III in larvae was low compared with reproductive adults, whereas hardly any juvenile hormone could be detected in pupae. We were not able to detect juvenile hormones I or II. The results agree well with previously reported data using the Galleria bioassay.  相似文献   

11.
Each larval moult in Manduca sexta consists of an identical series of developmental and behavioural events leading up to ecdysis. Injections of eclosion hormone into staged larvae in any instar resulted in the premature elicitation of the larval pre-ecdysis behaviour, comprising a rhythmic sequence of muscle contractions, followed by the larval ecdysis behaviour.A marked depletion of eclosion hormone stores form the ventral chain of ganglia coincided with each larval ecdysis and in the moult to the fifth instar, eclosion hormone activity appeared in the blood at the onset of the pre-ecdysis behaviour.Responsiveness to eclosion hormone for pre-ecdysis and ecdysis behaviour developed about 12 and 6 hr before normal ecdysis, respectively. Elicitation of ecdysis behaviour by exogenous hormone inhibited both subsequent behavioural responses to eclosion hormone and endogenous hormonal release.In conclusion, the behavioural programme involved in each larval ecdysis appears to be controlled by the eclosion hormone.  相似文献   

12.
Observations on the timing of ecdysis and neck ligation experiments on larvae of Samia cynthia ricini under various light-dark conditions show that an endogenous circadian clock controls the timing of larval ecdysis and prothoracicotropic hormone (PTTH) secretion preceding it. The clock, upon reaching a specific phase point, causes the brain to secrete PTTH provided that the brain has acquired the secretory competence. This time may vary, in relation to a previous ecdysis, according to the light-dark conditions by which the clock phase is specifically determined, but is fixed relative to a subsequent ecdysis. Thus, in the case of the ecdysis to the 5th instar, PTTH is secreted [15+nτ] hr (τ: free-running period, slightly less than 24 hr) after the clock has started when the rhythm is free-running, and in the second and third nights of the 4th instar under a photoperiod of 12 hr light and 12 hr dark. Full secretion of ecdysone occurs 6 hr after PTTH secretion and ecdysis ensues 34 hr thereafter to complete the ultimate sequence of ecdysis.  相似文献   

13.
There is an age-related division of labor in the honey bee colony that is regulated by juvenile hormone. After completing metamorphosis, young workers have low titers of juvenile hormone and spend the first several weeks of their adult lives performing tasks within the hive. Older workers, approximately 3 weeks of age, have high titers of juvenile hormone and forage outside the hive for nectar and pollen. We have previously reported that changes in the volume of the mushroom bodies of the honey bee brain are temporally associated with the performance of foraging. The neuropil of the mushroom bodies is increased in volume, whereas the volume occupied by the somata of the Kenyon cells is significantly decreased in foragers relative to younger workers. To study the effect of flight experience and juvenile hormone on these changes within the mushroom bodies, young worker bees were treated with the juvenile hormone analog methoprene but a subset was prevented from foraging (big back bees). Stereological volume estimates revealed that, regardless of foraging experience, bees treated with methoprene had a significantly larger volume of neuropil in the mushroom bodies and a significantly smaller Kenyon cell somal region volume than did 1-day-old bees. The bees treated with methoprene did not differ on these volume estimates from untreated foragers (presumed to have high endogenous levels of juvenile hormone) of the same age sampled from the same colony. Bees prevented from flying and foraging nonetheless received visual stimulation as they gathered at the hive entrance. These results, coupled with a subregional analysis of the neuropil, suggest a potentially important role of visual stimulation, possibly interacting with juvenile hormone, as an organizer of the mushroom bodies. In an independent study, the brains of worker bees in which the transition to foraging was delayed (overaged nurse bees) were also studied. The mushroom bodies of overaged nurse bees had a Kenyon cell somal region volume typical of normal aged nurse bees. However, they displayed a significantly expanded neuropil relative to normal aged nurse bees. Analysis of the big back bees demonstrates that certain aspects of adult brain plasticity associated with foraging can be displayed by worker bees treated with methoprene independent of foraging experience. Analysis of the over-aged nurse bees suggests that the post-metamorphic expansion of the neuropil of the mushroom bodies of worker honey bees is not a result of foraging experience. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Brain (median or lateral regions) or suboesophageal ganglion (SOG) homogenates of Day 1 fifth instar larvae of Trichoplusia ni induced the appearance of haemolymph juvenile hormone esterase (JHE) when injected into Day 1, Day 2 or early Day 4 fifth instar ligated hosts. Brain and SOG homogenates of late fourth instars also induced JHE when injected into Day 1 hosts, whole late fifth instar and pupal tissue did not. The pattern of JHE induction by early fourth through Day 3 fifth instar brain and SOG homogenates correlated with natural haemolymph JHE activity occurring at these times. Implantation of late fourth and Day 1 fifth instar brains and/or SOG into similar age hosts similarly induced JHE activity while prothoracic and abdominal ganglia did not. The relative levels of induction following implantation were SOG<brain<brain+SOG. JHE activity which appears in the haemolymph following injection of brain homogenates appears to be largely due to a single enzyme which has an isoelectric point indistinguishable from that of the natural haemolymph enzyme. Evidence is presented which suggests that inhibitory as well as stimulatory brain factors are involved in JHE regulation.  相似文献   

15.
Phase characters of the common cutworm, Spodoptera litura, were influenced by different rearing densities from the 4th-larval instar. Primarily the final feeding period of isolated larvae was 1 day longer than that of crowded larvae causing an increase in pupal weight. Applications of juvenile hormone I, II, or methoprene to crowded larvae caused an increased feeding period similar to that of isolated larvae when the juvenile hormones were applied within 1 day after the last-larval ecdysis. Allatectomy of isolated Spodoptera during the moult to the final-larval instar decreased the duration of the final feeding period to that of intact crowded larvae. These results suggested that one of the characters of phase variation, pupal weight, is influenced by the differences in the regulation and activity of the corpora allata during the last-larval instar. Other characteristics of phase variation such as behaviour (feigned death) and colour were not affected by alteration in juvenile hormone levels after the last larva ecdysis.  相似文献   

16.
The progress of developmental programme in the epidermal cells of last instar larvae of Bombyx mori was determined by ecdysteroid injections in normal and in JH-treated larvae. To clarify the importance of food intake in the control of development, starved animals were also used.The instar begins with a period during which the larval programme is expressed: this occurs in the presence of 20-hydroxyecdysone. Epidermal cells can thereafter secrete pupal cuticle after ecdysteroid injection although the larval programme is normally still present. During the last period only pupal characters can be expressed either in normal or in 20-hydroxyecdysone-injected larvae.These different developmental phases are not correlated with obligatory and facultative feeding periods.Transition from the first to the second phases is correlated with the absence of JH effects on pupal genes. JH applications during the second period, however, prevent the expression of pupal characters after 20-hydroxyecdysone injection. Thus, during this period, the pupal programme is not stabilized. Cellular reprogramming itself occurs at the onset of the last developmental period and is probably under the control of ecdysteroids.  相似文献   

17.
When tobacco hornworm (manduca sexta) larvae are starved for 5 days immediately after ecdysis to the 5th instar, then fed normal diet, they undergo a supernumerary moult instead of metamorphosis. During starvation the titre of juvenile hormone in the haemolymph increased to a maximum of 3 ng juvenile hormone I equivalents/ml (determined by the black Manduca larval bioassay) on the fourth day of starvation, then began a decline which continued through the subsequent feeding period. The changes in juvenile hormone titre were not attributable to changes in haemolymph volume during starvation (only a 5% decrease) and subsequent feeding. During starvation the esterase activity of the haemolymph declined 4-fold with a 2-fold larger decrease in the DFP-insensitive, presumably juvenile hormone specific, esterase activity. Both the total and the juvenile hormone-specific esterase activity then increased as a function of larval weight during the subsequent feeding period. As growth was slow in the prolongedly starved larvae, sufficient juvenile hormone was present at the time of prothoracicotropic hormone (PTTH) and ecdysteroid release at the beginning of the fourth day of feeding to prevent metamorphosis.  相似文献   

18.
Adult females of the ovoviviparous Argentinian cockroach, Blaptica dubia, were repeatedly treated with either 100?μg methoprene or 100?μg pyriproxyfen in 5?μL acetone either during the first vitellogenic cycle or during the period of gestation. Treatment during the first vitellogenic cycle (days 2–20 of adult life) did not inhibit vitellogenesis and oocyte growth, but prevented the formation of an ootheca. This was accompanied with a significant reduction of the titer of juvenile hormone (JH) III and an increased amount of ecdysone (E) and 20-hydroxyecdysone (20E) in the haemolymph of the animals. Treatment of adult females during the period of gestation (days 30–70) resulted in a complete degradation and resorption of the ootheca and induced another vitellogenic cycle. Again, this was associated with a decrease in haemolymph JH III titer, but an increase in the concentrations of free ecdysteroids.  相似文献   

19.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The juvenile hormone esterase (JHE) activity in Galleria mellonella larvae was measured after exposure to different experimental conditions that affect larval-pupal transformation. The data show that stimulation of production of JHE is closely coupled with the developmental signals that intiate larval-pupal metamorphosis. Injury, which delays pupation, delays the appearance of JHE activity if the larvae are injured within 48 hr after the last larval moult. Chilling of day-0 larvae induces a supernumerary larval moult and inhibits the appearance of JHE. However, JHE activity increases in chilled larvae when their commitment for an extra larval moult is reversed by starvation. Starvation is effective in reversing the commitment for an extra larval moult if commenced within 48 hr after chilling, thereby suggesting a critical period for that commitment. These data suggest that the stimulus for JHE synthesis and/or release occurs approximately within 48 hr after the last larval ecdysis. A series of studies involving implantation of brain, suboesophageal ganglion and fat body into chilled, as well as chilled and ligated larvae suggest that a factor from the brain is involved in stimulation or production of JHE in Galleria larvae.JH, which suppresses JHE activity in day-3, -5 and early day-6 Galleria larvae, stimulates the production of JHE in late day-6 larvae, suggesting that reprogramming in larval fat body may occur on day 6 of the last larval stadium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号