首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When two-day-old female Leptinotarsa decemlineata were starved, their corpus allatum activity, as measured by the radiochemical in vitro assay, was significantly reduced after 24 hr. Such a reduction was not observed when the nerve connections between the central nervous system and the retrocerebral complex were severed and the beetles starved up to 5 days. In some experiments, the rate of juvenile hormone biosynthesis in vitro, was substantiated by measurement of the juvenile hormone titre in the haemolymph by physico-chemical methods. It is concluded that intact nervous connections between the central nervous system and the corpora allata are essential for restraining the juvenile hormone biosynthesis during the initial stages of starvation.Corpora allata from 1-day starved insects were considerably stimulated in vitro by farnesenic acid indicating that juvenile hormone synthesis is controlled enzymatically at a stage prior to the final two steps in the pathway. However, on day 5 of starvation, rate-limitation may occur after formation of this intermediate, since farnesenic acid stimulation was much less at this time.Corpora allata of adult females newly emerged from the soil were activated within 4 hr regardless of feeding.  相似文献   

2.
A radioimmunoassay (RIA) for juvenile hormone III has been established which quantifies the biosynthesis of this hormone in vitro by the corpora allata of larvae and pupae of the tobacco hornworm, Manduca sexta. The specificity of the RIA for homologues and metabolites of juvenile hormone III was determined and it was found that the antibody was specific for juvenile hormone III and its acid. The juvenile hormone III RIA activity synthesized in vitro by corpora allata from day-5 last-instar larvae was identified as juvenile hormone III by high pressure liquid chromatography. The kinetics of hormone synthesis by corpora allata from selected stages during larval-pupal development revealed differential rates of synthesis, suggesting that juvenile hormone III may have a hormonal function in the larva and that regulation of its synthesis may occur. The significance of these developmental fluctuations in rates of juvenile hormone III synthesis by the corpora allata is discussed in relation to the haemolymph titres of the hormone.  相似文献   

3.
The release of material from neurosecretory synapses in the corpora allata of the Colorado potato beetle, Leptinotarsa decemlineata was visualised by an electron microscope procedure which involved tissue incubation in tannic acid. Using morphometry, the frequency of exocytosis phenomena was quantified in beetles kept under two different photoregimes. The number of exocytosis phenomena in the neurosecretory synapses in the corpora allata of beetles kept under short days was significantly higher than that of beetles reared under long-day conditions. In addition, the corpus allatum gland cells appeared to be more richly innervated by neurosecretory synapses under short-day than under long-day conditions. Previous studies using the in vitro radiochemical assay showed that the corpus allatum activity of short-day beetles is at least partly restrained by neurally mediated factors. The present morphological data strongly imply that this corpus allatum inhibitory substance is released from the neurosecretory synapses.  相似文献   

4.
When the titre of juvenile hormone III in female Leptinotarsa decemlineata was elevated by the implantation of supernumerary corpora allata or by the injection of the hormone, the rate of endogenous hormone production by the host glands was significantly restrained, as determined by the short-term in vitro radiochemical assay. From denervation studies, it is suggested that during phases of elevated juvenile hormone titre, the corpus allatum activity is regulated via humoral as well as neural factors requiring intact nerve connections. Restrainment of gland activity appears to be mainly via the neural pathway. Isolated corpora allata were not influenced by 10?5 M juvenile hormone III added to the incubation medium in vitro.Studies with farnesenic acid revealed that the final two enzymatic steps in the biosynthetic pathway of juvenile hormone are also diminished during prolonged neural inhibition of the corpora allata.20-Hydroxyecdysone and precocene II had no apparent effect on the corpus allatum activity of Leptinotarsa decemlineata.  相似文献   

5.
Adult mated females of the viviparous cockroach Diploptera punctata are moderately sensitive to precocenes. Oöcyte growth is inhibited and oviposition is delayed in insects topically treated with precocene II or precocene III. C16 juvenile hormone release by corpora allata of precocene-treated insects is markedly inhibited when compared to corpora allata of acetone-treated controls. Electron microscopy of the corpora allata reveals that precocene treatment results in a disorganisation of the intracellular organelles. Topically applied precocene II reaches a high concentration in the haemolymph (0.5 mM 2 hr after topical application of 250 μg). C16 juvenile hormone release by isolated corpora allata is inhibited by precocenes in vitro; half-maximal inhibition over a 3 hr period is obtained at 0.4 mM precocene II. In vitro inhibition of corpora allata by precocene II concentrations higher than 1 mM rapidly destroys the glands as evidenced by electron microscopy (total disintegration of cellular organelles) and by the virtual cessation of C16 juvenile hormone synthesis by the corpora allata. Inhibition of C16 juvenile hormone release by precocene is time-dependent and is not reversible over the short-term incubation in vitro. This inhibition does not appear to be related to the spontaneous activity of the glands in vitro, and it can be reduced by two epoxidase inhibitors. Precocenes are pro-allatocidins in this species: they are bioactivated within the corpora allata to cytotoxic epoxides.  相似文献   

6.
[14C]-Inulin injected into the blood of female milkweed bugs (Oncopeltus fasciatus) undergoing vitellogenesis is sequestered in the eggs. Determination of ovarian radiocarbon uptake gives a reproducible index of the progression of vitellogenesis that permits quantitative measurements prior to oviposition or under conditions where vitellogenesis is incomplete. This assay allows intra- and interspecific comparisons of the rates of juvenile hormone biosynthesis by corpora allata (CA) when these endocrine glands are transplanted into milkweed bug females, whose CA have been chemically destroyed with precocene. The method has the potential of distinguishing between nervous and hormonal regulation of the CA.  相似文献   

7.
The rate of juvenile hormone biosynthesis by locust corpora allata after transection of the nervi corporis allati 1, was measured in vitro using both radiochemical assay and gas chromatography—mass spectroscopy analyses. Incubations in different culture media or in pure haemolymph result in a low rate of juvenile hormone biosynthesis by disconnected glands. In vivo studies using juvenile, chromatotropic and gonadotropic effects of the corpora allata confirm the low activity of the disconnected glands. Furthermore, animals with disconnected corpora allata appear to be more sensitive to corpora allata implantation than control hosts.  相似文献   

8.
Corpora allata from Diploptera punctata females at adult ecdysis or at the end of the last-larval stadium, when implanted into decapitated females, underwent a cycle of juvenile hormone synthesis similar in timing and magnitude to that of glands implanted into control animals which had been starved and allatectomized. Starvation did not alter the cycle in rates of juvenile hormone synthesis of sham-operated animals.Decapitation of ovariectomized animals resulted in no cycle in rates of juvenile hormone synthesis by implanted adult corpora allata; however, implantation of an ovary along with the corpora allata into decapitated, ovariectomized hosts resulted in a cycle of juvenile hormone synthesis. In control animals, which retained their heads but were starved and allatectomized as well as ovariectomized, the implanted corpora allata showed a cycle of juvenile hormone synthesis only when implanted with an ovary. The maximal rates of juvenile hormone synthesis by the corpora allata in both experimental and control conditions were lower than normal, likely due to the repeated trauma of surgery. However, at no time from eclosion to the end of the first gonotrophic period was the brain necessary for the cyclic response of the corpora allata to the presence of the ovary.  相似文献   

9.
Normal rates of juvenile hormone synthesis, cell number and volume of corpora allata were measured in penultimate and final-instar male larvae of Diploptera punctata. The rate of juvenile hormone synthesis per corpus allatum cell was highest on the 4th day of the penultimate stadium, declined slowly for the remainder of that stadium, and rapidly after the first day of the final stadium.Regulation of the corpora allata in final-instar males was studied by experimental manipulation of the corpora allata followed by in vitro radiochemical assay of juvenile hormone synthesis. Nervous inhibition of the corpora allata during the final stadium is suggested by the observation that rates of juvenile hormone synthesis increased following denervation of the corpora allata at the start of the stadium; this operation induced a supernumerary larval instar. Juvenile hormone synthesis by corpora allata denervated at progressively later ages in the final stadium and assayed after 4 days decreased with age at operation. This suggests an increasingly unfavourable humoral environment in the final stadium, which was confirmed by the low rate of juvenile hormone synthesis of adult female corpora allata implanted into final-instar larvae. Thus, inhibitory factors or lack of stimulatory factors in the haemolymph may act with neural inhibition to suppress juvenile hormone synthesis in final-instar males.  相似文献   

10.
Regulation of corpus allatum activity in the black mutant strain of Manduca sexta was studied in vivo and in vitro. Allatectomy, denervation, and implantation studies demonstrated that black mutant corpus allatum activity remains low in both wild-type and black mutant host larvae. Attempts to distinguish humoral control mechanisms versus mechanisms dependent on intact allatal nerves indicated that intact allatal nerves were not required for the reduced black mutant corpus allatum activity in vivo. Incubation of corpora allata, using [1-14C]propionate as a juvenile hormone biosynthetic precursor and haemolymph as culture medium, confirmed that black mutant corpora allata are suppressed by a factor(s) in the haemolymph. Under identical conditions wild-type corpora allata were unaffected. Finally, the lowered black mutant corpus allatum activity in haemolymph in vitro correlates with the lowered juvenile hormone titre in black mutant larvae.  相似文献   

11.
Severance of nervi corporis allati I (NCA I) in day-1 adult female Locusta migratoria resulted in a significant decrease and a loss of the characteristic pattern of juvenile hormone biosynthesis by the corpora allata as determined by radiochemical assay. This decrease in the rate of juvenile hormone biosynthesis was not reflected in basal oöcyte growth. The lengths of the oöcytes were the same in NCA-transectioned and in the sham-operated females. The effect of severance of both NCA I and NCA II on juvenile hormone biosynthesis and ovarian maturation was similar to the effect of NCA I severance only.Rate of juvenile hormone biosynthesis by corpora allata of fourth-instar larvae exhibited a maximum of activity in the middle of the stadium. The severance of NCA I early in the stadium resulted in a very low rate of juvenile hormone biosynthesis and a disappearance of this peak. In NCA I-transectioned larvae, the duration of the stadium was significantly increased although larvae moulted into normal fifth instar.  相似文献   

12.
Basal oöcyte length, corpus allatum volume and “in vitro” juvenile hormone biosynthesis were measured in isolated and crowded Locusta migratoria females at selected times during the first gonotrophic cycle. Using gas chromatography-mass spectrometry with selected ion monitoring, the juvenile hormone titre in the haemolymph of isolated and crowded females was also determined 1 and 4 days after fledging. The rate of oöcyte growth was more rapid in isolated females and a significant (P < 0.01) difference in mean length was apparent as early as 3 days after fledging. This early manifestation of a difference in rate of oöcyte growth was correlated with a difference in haemolymph juvenile hormone titre between isolated and crowded females. Whilst there was no difference in titre 1 day after fledging, by day 4 the juvenile hormone titre in isolated females was found to be approximately twice that in crowded females. There was no significant difference in the rates of juvenile hormone biosynthesis by corpora allata from isolated and crowded females on days 0 through to 6 after fledging. On day 8, however, the rates of juvenile hormone biosynthesis of corpora allata from isolated females were very high (mean value = 136 pmol/h/pair) and were significantly (P < 0.002) greater than those of corpora allata from crowded females. Day 8 was also the point in the first gonotrophic cycle at which the difference in the mean basal oöcyte length in isolated and crowded females was at a maximum. The mean volume of corpora allata from isolated females was greater than that of corpora allata from crowded females at all points at which measurements were taken during the first gonotrophic cycle.  相似文献   

13.
Juvenile hormone has been detected in the haemolymph and corpora allata of adult male Locusta and the haemolymph of adult male Schistocera by a modified Galleria bioassay. The hormone was readily detected in the haemolymph of insects immediately after the final ecdysis, but then became difficult to detect until 2 days prior to the onset of sexual maturation. In sexually mature insects the titre of juvenile hormone was maintained at a constant level. The corpora allata of adult male Locusta increased in size throughout adult life. The juvenile hormone content of the corpora allata was low during the period of somatic growth, but increased at the onset of sexual maturation. Sectioning of the nervi corporis allati I in insects immediately after the final ecdysis prevented the normal increase in size of the corpora allata, but did not render them inactive since juvenile hormone was detected in the haemolymph after the operation. The half life of juvenile hormone in the haemolymph of allatectomized adult male Locusta was 1 to 2 hr.  相似文献   

14.
Precocene treatment does not disrupt the events of reproduction in Glossina morsitans morsitans or induce any apparent changes in treated tsetse. However, some females of the F1 generation are either sterile or show retardations in follicle development. Sterility is not reversed spontaneously or with juvenile hormone analogues. The critical period for precocene action is related to each ovulation. The corpora allata of precocene-treated tsetse are normal, but those of F1 sterile females are degenerate. The occurrence of retardation has enabled the characterisation of stages in follicle development in G. m. morsitans.  相似文献   

15.
Regulation of juvenile hormone synthesis during pregnancy was investigated after determining the normal rates of synthesis in pregnancy and the second gonadotrophic cycle in Diploptera punctata by direct in vitro radiochemical assay.The low rate of juvenile hormone synthesis during early pregnancy is maintained by three factors: (1) the small ovary which is incapable of eliciting increased rates of juvenile hormone synthesis (2) an inhibitory centre in the brain acting via intact nerves to the corpora allata (similar to that in virgin females) and (3) an inhibitory centre in the brain acting via the haemolymph (elicited by embryos in the brood sac).The existence of two inhibitory centres in the brain is supported by the additive effect of denervating the corpora allata and removing embryos. Whereas these operations alone activated the corpora allata in 54 and 31% of the females, respectively, together they activated 87%, similar to the 91% activated by denervation alone in late pregnancy.The inhibition which remains after denervation of the corpora allata can be removed by decapitation and restored by implantation of the protocerebrum from a pregnant female but not from one developing oöcytes.The inhibition elicited by embryos in the brood sac can be overcome by introduction of a stimulatory ovary and/or substitution of active corpora allata.  相似文献   

16.
The effects of C17 juvenile hormone (JH-II) have been investigated in Locusta on morphogenesis, ovarial development, and pigmentation, by means of injections in oil. These effects have been compared with those of injecting C18 juvenile hormone (JH-I) and of implanting corpora allata into Locusta. JH-I and JH-II are similar in their effects upon morphogenesis and pigmentation, and also on ovarial development in which JH-III has been found to be more effective in other insects. Injections of JH-I and JH-II have similar effects to those seen after implanting corpora allata. However in experiments on heart beat (in which the corpora allata have been shown to be involved) JH-I is the only substance to increase the rate of heart beat in the same way as active corpora allata. These observations are discussed, and it is concluded that JH-I is the hormone with effects nearest to those of the corpus allatum hormone itself.  相似文献   

17.
It is known that juvenile hormone plays an important role in the regulation of labour division and of the different life spans, and that the microclimate of the bee hive is characterized by its high CO2 concentration and its varying temperature depending on the presence of brood.We have investigated the influence of microclimates characteristic of breeding and broodless areas on the juvenile hormone titre in the haemolymph and whole body extracts, on the corpora allata in vitro activity, on the degradation of juvenile hormone and on the dry weight of the hypopharyngeal glands using bees of known ages. A microclimate of 35°C and 1.5% CO2, as observed in the breeding area, induces a rapid and pronounced increase in the juvenile hormone titre. On the other hand, this titre remains low in bees kept at 27°C and 1.5% CO2, a microclimate associated with broodless combs. Rates of juvenile hormone synthesis by corpora allata in vitro were found to be extremely low, even in the presence of farnesenic acid, and not related to the juvenile hormone titre. In vitro incubation of juvenile hormone in haemolymph revealed no degradation while injected juvenile hormone was found to be degraded and taken up by the gut at rates only weakly correlated with the juvenile hormone titre.We propose a hypothetical model for the regulation of the juvenile hormone titre as well as the course of labour division by the varying microclimates observed in the bee hive.  相似文献   

18.
Destruction, by electrocoagulation, of the median neurosecretory cells of the pars intercerebralis of 2-day old adult female Locusta migratoria completely suppressed normal juvenile hormone-biosynthetic activity of the corpora allata in most animals. For example, 6 days after electrocoagulation the rates of spontaneous juvenile hormone biosynthesis, measured by radiochemical assay of freshly isolated glands, showed a median value of less than 1100 that of the corresponding sham operated controls, which were then in mid-vitellogenesis. Injection of graded doses (200–1600 μg) of precocene I at this time, followed by assays five days later, resulted in a similar decline of both corpus allatum volume and precocene epoxidase activity (measured by radiochemical assays of precocene I dihydrodiol formation in vitro) in pars intercerebralis-coagulated and sham-operated animals, when expressed as a percentage of their own zero precocene controls. Electrocoagulation of the pars intercerebralis largely prevented the normal increase in both corpus allatum volume and its epoxidase activity, so that by age 13 days these parameters were about 2.5-fold lower in coagulated vs control (sham operated) animals. In fact, electrocoagulation had no marked effect on the value of epoxidase activity per unit corpus allatum volume. It is concluded that the corpora allata from this species and stage are sensitive to precocene irrespective of whether they are active in biosynthesis of juvenile hormone.  相似文献   

19.
After metamorphosis the development of males of Pterostichus nigrita is controlled by photoperiods. Development is free of any dormancy in short day conditions (photoperiods with less than 16·9 to 15·1 hr of light per day). This type of dormancy can be called ‘photoperiodic quiescence’. Short days promote the aggregation of spermatozoa to spermiozeugma. Long day conditions suppress the development of spermiozeugma reversibly. The optimum temperature for the production of spermiozeugma is 15°C. Photoperiods must be perceived by means of the compound eyes. Extirpation of both eyes results in a development of the gonads just as occurs in continuous darkness.Short days activate the corpora allata. The volume of these glands is correlated with the state of sexual maturity (formation of spermiozeugma, growth and filling of the accessory glands). Intra- and intersexual transplantations of active corpora allata into undeveloped male beetles maintained in long day photoperiods replace the short day influence.Very probably the gonadotropic hormone is a juvenile hormone. By injection of 10,11-farnesyl-methyl-ester or a synthetic juvenile hormone, sexual maturity can be initiated.  相似文献   

20.
The effect of 20-hydroxyecdysone upon the activity of corpora allata (CA) from female Diploptera punctata has been investigated. This ecdysteroid inhibits juvenile hormone (JH) biosynthesis by the CA, whether they have been implanted into a male, or remained in situ within the female. In the female, this inhibition is reflected in reduced oöcyte growth and vitellin content. The allatostatic effect of 20-hydroxyecdysone becomes apparent in vivo within 24 hr. However, no inhibition was observed when the CA were maintained in vitro for 42 hr in medium containing up to 1·10?5 M 20-hydroxyecdysone. This suggests that the effect of the hormone upon the CA is indirect. These experiments raise the possibility that ecdysteroids play an allatostatic role during the normal gonotrophic cycle in Diploptera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号