首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A radioimmunoassay (RIA) for juvenile hormone III has been established which quantifies the biosynthesis of this hormone in vitro by the corpora allata of larvae and pupae of the tobacco hornworm, Manduca sexta. The specificity of the RIA for homologues and metabolites of juvenile hormone III was determined and it was found that the antibody was specific for juvenile hormone III and its acid. The juvenile hormone III RIA activity synthesized in vitro by corpora allata from day-5 last-instar larvae was identified as juvenile hormone III by high pressure liquid chromatography. The kinetics of hormone synthesis by corpora allata from selected stages during larval-pupal development revealed differential rates of synthesis, suggesting that juvenile hormone III may have a hormonal function in the larva and that regulation of its synthesis may occur. The significance of these developmental fluctuations in rates of juvenile hormone III synthesis by the corpora allata is discussed in relation to the haemolymph titres of the hormone.  相似文献   

2.
Injection of azadirachtin in freshly emerged last-instar larvae of Manduca sexta elicited different reactions according to the dose administered. At low doses, pupation occurred in most of the cases, but the resulting pupae were defective for the most part. Individuals treated with higher doses usually did not fully complete development, moulting to supernumerary larvae or dying as larvae (sometimes at the wandering stage) after varying periods of survival. The haemolymph ecdysteroid titre of individuals treated with 2 μg azadirachtin/g bodyweight showed characteristic changes which are presumed to cause the disorders in the last stages that normally lead to pupation. Injection of moulting hormone in azadirachtin-treated individuals at certain times during the penultimate stage elicited no reduction of the azadirachtin-induced effects. It is shown that azadirachtin is able to inhibit development even when individuals performed a complete moult after the treatment.  相似文献   

3.
When newly-ecdysed 5th instar larvae of Manduca sexta were starved for 3 days and thereafter fed on standard diet the majority (90%) of the surviving larvae moulted into 6th instars. Allatectomy prior to starvation abolished the supernumerary moult, while denervation of the corpora allata (CA) had no effect.Cautery of medial neurosecretory cells, but not of the lateral cells, prevented supernumerary moulting and pupation ensued. Transplantation of brains from young 5th instar donors into larvae, whose medial neurosecretory cells were cauterized prior to starvation, restored the extra larval moult. Neither CA nor corpora cardiaca (CC) could be substituted for the medial neurosecretory cells.For induction of the supernumerary moult the medial neurosecretory cells are required only until day 1 after refeeding whereas the CA are required until day 3 after refeeding. Allatectomy on day 3 after refeeding resulted in the production of black 6th instar larvae.We conclude that starvation-induced supernumerary moulting is due to activation of the CA by allatotropin produced by medial neurosecretory cells in the brain. The anteromedial cells (group II) appear to be the source of allatotropin.  相似文献   

4.
The concentrations of sodium, potassium, chloride, bicarbonate, total phosphate, labile phosphate, inorganic phosphate, protein, polypeptides, amino acids, trehalose, and glucose, as well as pH and osmotic pressure of larval-pupal moulting fluid and haemolymph were measured in the tobacco hornworm, Manduca sexta, during the secretion and resorption of moulting fluid. Moulting fluid is a mildly alkaline (pH 7.2), iso-osmotic (330 mOsm) potassium bicarbonate salt solution containing within it the sol form of moulting gel. Bicarbonate is the principal anion in moulting fluid. It is only a minor component of haemolymph. Significant differences in the concentrations of potassium, chloride, bicarbonate, non-labile phosphate, labile phosphate, inorganic phosphate, protein, polypeptide, amino acids, trehalose, and glucose indicate that the integumentary epithelium does not act as a semi-permeable membrane, and that free diffusion between moulting fluid and haemolymph can account for only a small fraction of the molecular species movement between these two fluids.  相似文献   

5.
A new sensitive method for determining juvenile hormone (JH) hydrolysis has been developed which measures the release of tritiated methanol from JH labelled in the methyl ester group. Using this assay we investigated the interaction of JH with haemolymph esterases and haemolymph JH-binding protein. Haemolymph from fifth instar larvae of Manduca sexta contains two families of esterases which can be distinguished by their reactivity with diisopropylphosphorofluoridate (DFP). One group consists of general esterases which are capable of hydrolysing free JH but not JH complexed to the binding protein and are completely inhibited by low concentrations of DFP (10−4 M). The other group (JH-specific esterases), relatively DFP resistant, has little detectable general esterase activity but can hydrolyse JH bound to the binding protein as well as free JH. The major JH-esterase has a sedimentation coefficient of 4·98 S and a diffusion coefficient of 6·4 × 10−7 cm2 sec−1. The molecular weight calculated from these values is 6·7 × 104. The general esterases are present throughout the larval stage, but the JH-specific esterases are barely detectable until the fourth day of the fifth instar when they suddenly appear at a high concentration. Since the general esterases cannot hydrolyse bound JH, one function of the binding protein is to protect JH during transport in the early instars, thus confirming that the binding protein is a true carrier of JH. In the late fifth instar prior to metamorphosis, however, JH-specific esterases appear in the haemolymph resulting in the hydrolysis of JH complexed to the carrier protein. Thus, by lowering JH titre, the JH-esterases play an important rôle in development in M. sexta.  相似文献   

6.
A mutant of the tobacco hornworm, Manduca sexta, was found to form black melanized cuticle in the last larval instar. This black phenotype is due to a single sex-linked gene whose expression can be changed by one or more modifier genes. The expression of the mutant phenotype is prevented by juvenile hormone (JH) application at the time of head cap apolysis during the moulting cycle to the last larval instar. The bl mutant is equally as sensitive to JH at this time as is a neck-ligated wild type larva, ruling out an absence of hormone receptors or a difference in JH metabolism. The bl corpora allata were found to be less active at this time than were those of the wild type larva, suggesting that the defect resides in the control of the corpora allata. Since selection for complete expression of the bl phenotype is easy, this mutant provides the basis for an ultrasensitive JH bioassay to be described in a forthcoming paper.  相似文献   

7.
Juvenile hormone esterase titres were monitored in gate I and gate II last instar larvae of Trichoplusia ni using JH III as substrate. Two peaks of activity were observed for both gate I and gate II larvae, although the first and second juvenile hormone esterase peaks for the gate II larvae are extended and delayed one day, respectively. Head or thoracic ligations before the prepupal stage lower or block the appearance of both esterase peaks. Juvenile hormone I and II, as well as homo and dihomo juvenoids can induce the second juvenile hormone esterase peak in both normal and ligated larvae, and increase the esterase titre during the first peak in nonligated larvae. Induction of the juvenile hormone esterases is possible in non-ligated larvae as soon as the moult to the last instar has occurred and in ligated larvae as soon as the first esterase peak has started to decline. Distinct mechanisms of regulation are present for the first and second juvenile hormone esterase peaks. Juvenile hormone does not appear to be involved in regulating its own metabolism by directly inducing the first esterase peak; however, evidence is consistent with a brief burst of juvenile hormone which occurs prior to pupation inducing the production of the second peak of juvenile hormone esterase activity.  相似文献   

8.
The hostplant specificity of the tobacco hornworm, Manduca sexta, is not inherited but is induced. Newly hatched larvae are polyphagous and will feed on many kinds of non-hostplants although they are not able to grow on them. They become oligophagous when they are reared on solanaceous plants but remain polyphagous when reared on diet. The critical period for induction is in the first instar. The induced oligophagous behaviour can be reversed by forcing larvae to feed on diet.  相似文献   

9.
Abstract When given in a critical dietary dose range, the insecticidal bisacylhydrazine ecdysteroid agonists RH‐5849 or tebufenozide (RH‐5992) cause fifth stage Manduca sexta (L.) larvae to moult to a supernumerary sixth‐stage giant larva. The effect is dependent on exposure to the chemicals immediately after the previous ecdysis. Previous removal of the corpora allata does not interfere with the induction of premature moulting by RH‐5849 but completely prevents the formation of supernumerary larvae. The juvenilizing effect is therefore due to the interaction of the moult‐promoting effect of the ecdysteroid agonists with the high titre of endogenous Juvenile Hormone that is present just after ecdysis to the fifth stage in this insect. The ecdysteroid agonists themselves appear to have no intrinsic Juvenile Hormone‐agonist properties. Sixth‐stage larvae resulting from exposure to critical dietary concentrations of RH‐5849 are morphologically completely larval in character. When transferred to diet without the ecdysteroid agonist, they feed normally and gain weight, growing much larger than control fifth stage insects. At the end of the supernumerary stage, they cease to feed, wander in the usual way, and form a normal pupal cuticle but then die as pharate pupae without shedding the sixth‐stage larval cuticle.  相似文献   

10.
Each larval moult in Manduca sexta consists of an identical series of developmental and behavioural events leading up to ecdysis. Injections of eclosion hormone into staged larvae in any instar resulted in the premature elicitation of the larval pre-ecdysis behaviour, comprising a rhythmic sequence of muscle contractions, followed by the larval ecdysis behaviour.A marked depletion of eclosion hormone stores form the ventral chain of ganglia coincided with each larval ecdysis and in the moult to the fifth instar, eclosion hormone activity appeared in the blood at the onset of the pre-ecdysis behaviour.Responsiveness to eclosion hormone for pre-ecdysis and ecdysis behaviour developed about 12 and 6 hr before normal ecdysis, respectively. Elicitation of ecdysis behaviour by exogenous hormone inhibited both subsequent behavioural responses to eclosion hormone and endogenous hormonal release.In conclusion, the behavioural programme involved in each larval ecdysis appears to be controlled by the eclosion hormone.  相似文献   

11.
In vitro analysis of juvenile hormone esterase activity of haemolymph of T. molitor was performed during the end of post-embryonic development. Weak activity was found in penultimate stage larvae as in the major part (except the last day) of last-larval instar, while very high activity was monitored in the early pupae (female or male).This pupal peak was the only one detected during development in the insect, coinciding with the pupal juvenile hormone sensitive period. The first juvenile hormone sensitive period, during the lastlarval instar, does not seem to be protected by any juvenile hormone esterase activity in contrast to other species. These results suggest a central control for the drop in juvenile hormone level ceasing synthesis by the corpora allata after integration of external stimuli. This hypothesis could explain the natural occurrence of prothetelic larvae, the absence of pupal adult intermediates and the variable number of instars in Tenebrio.  相似文献   

12.
Haemolymph levels of juvenile hormone esterase, 1-naphthyl acetate esterase, and juvenile hormone were measured in synchronously staged diapause and nondiapause larvae of the European corn borer, Ostrinia nubilalis. Juvenile hormone esterase levels were monitored using juvenile hormone I as a substrate while juvenile hormone titres were measured with the Galleria bioassay. Haemolymph of nondiapause larvae showed two peaks of juvenile hormone hydrolytic activity: one near the end of the feeding phase and a smaller one just prior to pupal ecdysis. These peaks of enzyme activity correlated well with the low levels of haemolymph juvenile hormone. Juvenile hormone titres were high early in the stadium then showed a second peak during the prepupal stage coinciding with low esterase activity. Diapause haemolymph had peak juvenile hormone esterase activity nearly 4 times the nondiapause level, reaching a peak near the end of the feeding phase. Diapause-destined larvae retained high juvenile hormone titres even during the rise of the high esterase levels. 1-naphthyl acetate esterase levels did not correlate with the juvenile hormone esterase levels in either the diapause or nondiapause haemolymph. High levels of 1-naphthyl acetate esterase activity were associated with moulting periods.  相似文献   

13.
Levels of uric acid in the whole body of the tobacco hornworm, Manduca sexta increased steadily for the 9 days of the fifth instar. However, concentrations in the haemolymph were lowest during the transition from the feeding stage to the wandering stage (days 3, 4), the time when there was a switch from uric acid excretion by the Malpighian tubule-hindgut system to storage in the fat body. Haemolymph volumes, determined for larvae between 2 and 6 days into the fifth instar by isotope dilution with [14C]-inulin, were used to calculate rates of incorporation of uric acid into Malpighian tubules and fat body of larvae injected with [14C]-uric acid. These labelling studies indicated that the Malpighian tubules ceased to remove uric acid from the haemolymph some time between the last 6 hr of day 3 of the fifth instar and the first 18 hr of day 4. At the same period, fat body removed significant quantities of uric acid from the haemolymph. The times of initial decreases and increases in levels of uric acid in haemolymph and fat body, respectively, indicated that storage in the fat body started before cessation of elimination via the Malpighian tubule-hindgut system.  相似文献   

14.
The relationship between the ecdysteroid titre and eclosion hormone was explored for the pupal and adult ecdyses of Manduca sexta. Ecdysteroid treatment late during either moult caused a dosedependant delay in the time of ecdysis. Sensitivity to exogenous steroid treatment dropped off as the respective moults neared completion and in both cases coincided with the time of the low point in the endogenous ecdysteroid titre. It was concluded that an ecdysteroid decline is a normal prerequisite for the ecdyses of both stages. The steroid drop is important for two aspects of the eclosion hormone system: it causes target tissues to become sensitive to the peptide and it is a prerequisite for the subsequent release of eclosion hormone itself. Thus, the dual action of the declining ecdysteroid titre insures that when eclosion hormone is released, the tissues will be competent to respond to it.  相似文献   

15.
A haemolymph ecdysteroid titre of the fifth (last)-larval instar of the hemipteran, Rhodnius prolixus has been determined by radioimmunoassay. During the last-larval stadium the ecdysteroid titre increases from a negligible level in the unfed insect to a detectable level within minutes following a blood meal. The titre reaches a plateau of ~50–70 ng/ml at 3–4 hr and this level is maintained until day 5–6, the time of the head-critical period in Rhodnius. At the head-critical period the titre begins to increase again, this time dramatically, reaching a peak of ~ 3500 ng/ml at day 13. From day 14 to ecdysis (day 21) the titre declines to a low level, ~ 30 ng/ml. Basal levels of ecdysteroids, ~ 15 ng/ml, were detectable in young adult males and females. A survey of haemolymph volumes during the last-larval instar indicates that the changes in the ecdysteroid titre reflect changes in the rates of ecdysteroid synthesis, and not changes in haemolymph volume. Excretion of ecdysteroids varies systematically during the instar, suggesting that control of ecdysteroid excretion may be important in regulation of the haemolymph titre. Qualitative analysis of the haemolymph ecdysteroid RIA activity revealed the presence of only ecdysone and 20-hydroxy-ecdysone. For the large peak preceding larval-adult ecdysis, 20-hydroxy-ecdysone was the predominant hormone. These results indicate that there may be two periods of release of prothoracicotropic hormone (PTTH) from the brain in Rhodnius, one immediately following the blood meal and the second on day 5 or 6. The significance of these times of PTTH release is discussed in relation to classical evidence of the timing of moulting hormone action, the response of target tissues, and with more recent findings on the timing of release of neurosecretory material from the brain of Rhodnius during moulting.  相似文献   

16.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

17.
In the last-larval instar of the tobacco hornworm, Manduca sexta, a switch from excretion of uric acid to storage in the fat body occurs during transition from the feeding to the wandering stage. Neuroendocrine control of this change from excretion to storage was demonstrated by neck-ligation experiments with synchronously reared larvae. Results indicate that a neurohormone is released from the head 24–30 hr before the initiation of wandering and coincident with the first release of ecdysone that initiates metamorphosis. Direct involvement of the moulting hormone was shown by the effects of multiple injections of 20-hydroxyecdysone into the abdomen of larvae that had been ligated before the release of hormone. Urate levels in the fat body were 20- to 100-fold higher from hormone-injected larvae as from saline inject controls. Topically applied juvenile hormone or methoprene reversed the 20-hydroxyecdysone-induced storage of urate. Increased levels of uric acid in the haemolymph during pupal development result from the presence of juvenile hormone, and the abrupt decrease in uric acid concentration in the haemolymph just prior to pupal ecdysis results from a decreased titre of juvenile hormone. Applications of methoprene prevented the decrease in uric acid levels in the haemolymph.  相似文献   

18.
The frontal ganglion of the tobacco hornworm, Manduca sexta (L.), was found to contain two neurosecretory (NS) cells (max dia = 40–45 μm). The cytoplasmic inclusions of the NS cells were stained purple with paraldehyde fuchsin, and marked fluctuations in amounts of NS material in the perikarya were observed, depending upon the developmental status of the insect. The perikarya of NS cells in the frontal ganglia of starved larvae and diapause pupae contained large accumulations of NS material, whereas feeding larvae and developing pharate adults showed relatively low amounts of neurosecretion. Electron microscopy revealed large accumulations of NS granules (dia = 80–240 nm) in the frontal ganglia of diapause pupae, but only slight accumulations of granules were seen in the NS cells of developing larvae and pharate adults.It was concluded that axonal transport and release but not synthesis is shut down during starvation and diapause, leading to accumulation of NS material in the perikarya. It is also suggested that the failure of many investigators to differentiate NS cells in the frontal ganglion of various insects may have been due to the selection of very active stages when the amount of available NS material was too low to be visualized by conventional staining techniques.  相似文献   

19.
During the fifth larval instar of Manduca sexta the commitment of the epidermis to the synthesis of pupal cuticle is presumably affected by a small increase in ecdysteroid titre when juvenile hormone levels are minimal. Two sequential rounds of DNA synthesis without an intervening mitosis occur at about this time, resulting in polyploidy of the epidermis. There is a definite temporal correlation between the first peak of ecdysone and the second round of DNA synthesis and indirect evidence has been presented which suggests that this small increase in ecdysteroid titre actually initiates the second period of DNA synthesis. Further, it appears that large doses of ecdysteroids do not elicit the same response as smaller doses at a specific developmental stage, indicating that the different physiological effects of ecdysteroids (reprogramming and apolysis) may be dependent upon the relative concentration of the hormone. Following mitosis which takes place on approximately day 6 of the last instar, the epidermis undergoes apolysis and secretes pupal cuticle, expressing the commitment made 4.5 days earlier. These results support the ‘quantal mitosis’ theory of cytodifferentiation since the covert differentiative event occurs during a period of DNA synthesis and since mitosis precedes the expression of that event.  相似文献   

20.
A study was made of photoperiodic induction of the facultative pupal diapause in the tobacco hornworm, Manduca sexta, reared on artificial diet in the laboratory. The species entered a prolonged diapause when the egg and larval feeding stages were reared in daily photoperiods of 13·5 hr or less. Diapause was induced in all insects at photoperiods ranging from 1 to 13 hr, and part of the population entered diapause at only 15 to 30 min of light per day. Photoperiods of 14 hr or more and continous darkness prevented diapause. Duration of diapause varied with the inductive photoperiod in which the hornworms were reared during the sensitive period. Insects reared in longer diapause-inducing photoperiods within a range of 12 to 13·25 hr remained in diapause longer than those reared in shorter photoperiods. There was no difference in the rate of larval development of hornworms reared in diapause-inducing vs diapause-preventing photoperiods. Temperatures of 26 to 30°C were most favourable for the photoperiodic induction of diapause; at 21°C, the critical photoperiod and incidence of diapause were decreased. Diapause induction was suppressed by low (18°C) and higher (33°C) temperatures. The number of inductive 12L:12D (light = 12 hr; dark = 12 hr) cycles required to induce diapause ranged from as few as 5 for some insects to as many as 12 for others when the post-inductive régimen was continuous light, but with insects previously held in continuous dark, as few as 2 12L:12D cycles during the last 2 days of larval feeding induced diapause in 38 per cent of the population. Only 3 to 4 cycles of 15L:9D during the final larval instar reversed inductive effects of 14 to 15 12L:12D cycles. Photoperiodic sensitivity extended from the late embryo to the end of larval feeding but showed considerable fluctuation during development with maximum sensitivity occurring just before egg hatch and during larval growth.Light breaks applied at different times during the dark period of 12L:12D cycles generated different response curves, depending on the number of cycles in which light breaks were repeated. When repeated for 6 cycles, a unimodal response curve was obtained; 10 cycles produced a bimodal curve and light breaks given for 18 cycles throughout the sensitive period averted diapause regardless of time of night applied. It is suggested that diapause is regulated by a photo- and thermolabile substance that accumulates during long nights (11 hr or more) and acts during the early pupal stage to inhibit the translocation and release of development-promoting neurosecretion from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号