首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is assumed that a non-repetitive photoperiodic clock, or “hourglass”, could be circadian based, and described as an instantly damping circadian oscillator. A model for an instantly damping oscillator is developed in the present paper and tested on photoperiodic morph determination in the black bean aphid, Aphis fabae. The kinetics of the clock are presented in the form of phase resetting curves which plot the phase of the oscillation at lights-on against the phase at lights-off. Other components of the model, that is a “counter”, that accumulates and integrates photoperiodic information contained in a number of light-dark cycles up to a threshold value for induction to occur, and an influence of the circadian system on the induction process, are as previously described in the “hourglass timer-oscillator counter” model of photoperiodic induction of diapause in the spider mite, Tetranychus urticae. It is shown that night-length measurement in A. fabae can be described by means of an instantly damping oscillator: the phase resetting curves are based on a number of photoperiodic experiments and resemble the phase resetting curves determined for overt circadian rhythms in other insects. However, the results do not distinguish between a photoperiodic clock based on a damped circadian oscillator or a non-circadian hourglass mechanism.  相似文献   

2.
To explain photoperiodic induction of diapause in the spider mite Tetranychus urticae (Acarina: Tetranychidae) a theoretical model was developed, consisting of two components, viz. a “clock” and a photoperiodic “counter” mechanism. The clock executes photoperiodic time measurement according to hourglass kinetics; the counter accumulates the photoperiodic information contained in a number of successive lightdark cycles by adding up the number of “long” and “short” nights experienced by the developmental stages of the mites sensitive to the photoperiod. The influence of the circadian system on photoperiodic induction is interpreted as an inhibitory effect exerted on the expression of the photoperiodic response; this effect is encountered only in certain photoperiodic regimes, where the circadian system and the photoperiod are out of “resonance” with each other. This “hourglass timer oscillator counter model”, devised to give a theoretical explanation of photoperiodic time measurement, the summation of photoperiodic information, and the influence of the circadian system on photoperiodic induction, proved to be consistent with experimental results obtained with T. urticae in both symmetrical and asymmetrical “skeleton” photoperiods, the latter based on diel as well as non-diel lightdark cycles.  相似文献   

3.
For over 70 years, researchers have debated whether the ability to use day length as a cue for the timing of seasonal events (photoperiodism) is related to the endogenous circadian clock that regulates the timing of daily events. Models of photoperiodism include two components: (1) a photoperiodic timer that measures the length of the day, and (2) a photoperiodic counter that elicits the downstream photoperiodic response after a threshold number of days has been counted. Herein, we show that there is no geographical pattern of genetic association between the expression of the circadian clock and the photoperiodic timer or counter. We conclude that the photoperiodic timer and counter have evolved independently of the circadian clock in the pitcher-plant mosquito Wyeomyia smithii and hence, the evolutionary modification of photoperiodism throughout the range of W. smithii has not been causally mediated by a corresponding evolution of the circadian clock.
Kevin J. EmersonEmail:
  相似文献   

4.
Plants and animals use day or night length for seasonal control of reproduction and other biological functions. Overwhelming evidence suggests that this photoperiodic mechanism relies on a functional circadian system. Recent progress has defined how flowering time in plants is regulated by photoperiodic control of output pathways, but the underlying mechanisms of photoperiodism remain to be described. The authors investigate photoperiodism in a genetic model system for circadian rhythms research, Neurospora crassa. They find that both propagation and reproduction respond systematically to photoperiod. Furthermore, a nonreproductive light-regulated function is also enhanced under certain photoperiodic conditions. All of these photoperiodic responses require a functional circadian clock, in that they are absent in a clock mutant. Night break experiments show that measuring night length is one of the mechanisms used for photoperiod assessment. This represents the first formal report of photoperiodism in the fungi.  相似文献   

5.
The incidence of diapause in the spider mite Tetranychus urticae was predicted for various photoperiodic regimes, according to the external coincidence model of photoperiodic time measurement. A phase response curve was constructed for the hypothetical photoperiodic oscillator in these mites: entrainment of this photoperiodic oscillator to a variety of ‘complete’ and ‘skeleton’ photoperiods was calculated using a transformation method for circadian rhythms. The external coincidence model proved adequate to describe experimental results with T. urticae in ‘complete’ photoperiods (T = 24 hr), symmetrical ‘skeleton’ photoperiods (T = 24 hr), asymmetrical ‘skeleton’ photoperiods (T = 24 hr) (night-interruption experiments), and ‘resonance’ experiments, in which the light component of a light/dark cycle was held constant at 8 hr and the dark component was varied over a wide range in successive experiments, providing cycles with period lengths up to 92 hr. The external coincidence model proved inadequate to explain results obtained in a ‘T-experiment’ with T. urticae comprising 1 hr pulses of light in a cycle of LD1:17.5 (T = 18.5 hr) with the first pulse of the train starting at different circadian phases. The validity and limitations of the external coincidence model as an explanation of photoperiodic time measurement in T. urticae are discussed in view of the above results.  相似文献   

6.
This review examines possible role(s) of circadian ‘clock’ genes in insect photoperiodism against a background of many decades of formal experimentation and model building. Since ovarian diapause in the genetic model organism Drosophila melanogaster has proved to be weak and variable, recent attention has been directed to species with more robust photoperiodic responses. However, no obvious consensus on the problem of time measurement in insect photoperiodism has yet to emerge and a variety of mechanisms are indicated. In some species, expression patterns of clock genes and formal experiments based on the canonical properties of the circadian system have suggested that a damped oscillator version of Pittendrigh's external coincidence model is appropriate to explain the measurement of seasonal changes in night length. In other species extreme dampening of constituent oscillators may give rise to apparently hourglass-like photoperiodic responses, and in still others there is evidence for dual oscillator (dawn and dusk) photoperiodic mechanisms of the internal coincidence type. Although the exact role of circadian rhythmicity and of clock genes in photoperiodism is yet to be settled, Bünning's general hypothesis (Bünning, 1936) remains the most persuasive unifying principle. Observed differences between photoperiodic clocks may be reflections of underlying differences in the clock genes in their circadian feedback loops.  相似文献   

7.
Abstract

Resonance experiments (Nanda‐Hamner protocol) conducted at two temperatures for diapause termination in Pimpla instigator (Hymenoptera: Ichneumonidae) do not support the view that the photoperiodic clock has an oscillatory component, but suggest the presence of a non‐rhythmic timer or hourglass mechanism. These results are best explained by a two hourglasses model, one of which starts at light‐on and measures the photophase and the other is initiated by light‐off and measures the scotophase. The most likely hypothesis is that the ratio of photophase to scotophase lengths is the determining element. Good agreement is obtained between results predicted by two hourglasses model and results observed in Pimpla. The diurnal hourglass continues to run for long time (several months) in constant condition (LL) and does not require to be ‘turned over’ by D/L transition, in contrary to the classical model of hourglass which executes a single act of time measurement in extented phase and then stops. The most simple explanation is that some essential factor of diapause termination is synthesized during photophase and degraded during scotophase. Therefore an independent photoperiodic counter (for sommation of daily informations) is not necessary. The two hourglasses system serves as photoperiodic clock and accumulation of product as counter.  相似文献   

8.
Larval cultures of the flesh-fly Sarcophaga argyrostoma maintained in circadian ‘resonance’ experiments produced a high incidence of pupal diapause when the period of the light cycle was close to (T) 24, 48 or 72 hr, but a low incidence of diapause at T 36, 60 or 84 hr. Cultures pre-programmed for diapause by exposing pregnant females to long nights indicated the induction of non-diapause development at T 36, 60 and 84, whereas cultures pre-programmed for diapause-free development by exposing females to continuous light indicated the induction of diapause at T 24, 48 and 72.Raising the temperature reduced the heights of the diapause peaks whereas lowering the temperature raised them. With progeny from long-night-reared flies the lowest temperature tested (18°C) produced a result indistinguishable from an ‘hour-glass’ response, warning that ‘negative’ resonance experiments may merely indicate non-permissive conditions for demonstrating the involvement of circadian rhythmicity in insect photoperiodism.The results of the ‘resonance’ experiments and the effects of temperature are interpreted in terms of a multioscillator ‘external coincidence-photoperiodic counter’ model for the clock.  相似文献   

9.
This paper examines the views of Erwin Bünning and Tony Lees on the mechanism of photoperiodic time measurement, the former advocating a circadian basis for the phenomenon and the latter a non-circadian hourglass-like timer. This difference in opinion led to a protracted split among workers on photoperiodism, some supporting an oscillatory clock and others an "hourglass", and gave rise to the often stated opinion that the two forms of time measurement were mutually exclusive. This paper, however, suggests that both oscillatory and hourglass-like properties are to be seen in insect photoperiodism. Furthermore, the differences between the two apparently conflicting models may be resolved if, following Bünning, "hourglasses" are regarded as damping circadian oscillators, with the more self-sustained (clearly oscillatory) and more highly damped (hourglass-like) responses being parts of a continuous series. Since circadian rhythmicity is an all-pervading and fundamental aspect of insect biology, currently opening up to genetic and molecular analysis, recognition of the basic similarity of a wide range of insect photoperiodic timers may help to unravel the biochemical nature of the mechanism(s) involved.  相似文献   

10.
Photoperiodic time measurement in insects: a review of clock models   总被引:1,自引:0,他引:1  
Based on analyses of responses of insects and mites to a wide range of diel and nondiel experimental light-dark schedules, a variety of models have been developed for the photoperiodic clocks in these species by nearly as many investigators. According to some of these models, the photoperiodic clock is based on a mechanism separate from the circadian system, that is, a so-called "hourglass." According to other models, the clock is based on one or more circadian oscillators that may be coupled to each other and that may or may not show a certain degree of damping. In this context, a rapidly damping oscillator could be regarded as an hourglass. The present article gives an overview of the many different clock models and their philosophies, and it makes comparisons among them to provide a better understanding about how these models are related, if at all, and why the double circadian oscillator model is the most favored model at present.  相似文献   

11.
Functional involvement of a circadian clock in photoperiodism for measuring the length of day or night had been proposed more than 70 years ago, and various physiological experiments have supported the idea. However, the molecular basis of a circadian clock has remained veiled in insects. Nevertheless, our knowledge of the functional elements of a circadian clock governing circadian rhythmicity has advanced rapidly. Since both circadian rhythms and photoperiodism depend on the daily cycles of environmental changes, it is easy to assume that the same clock elements are involved in both processes. Recently, the RNA interference (RNAi) technique clarified that the molecular machinery of a circadian clock governing photoperiodism is identical to that governing circadian rhythmicity. Here, I review the theoretical background of photoperiodic responses incorporating a circadian clock(s) and recent progress on the molecular clockwork involved in photoperiodism in the bean bug Riptortus pedestris and other insect species. I have focused on the intense controversy regarding the involvement of a circadian clock in insect photoperiodism.  相似文献   

12.
Photoreceptors involved in photoperiodism in insects and mites can be either the retinal photoreceptors in the visual system or nonvisual extraretinal photoreceptors. Mites with no eyes have a clear photoperiodic response, suggesting the involvement of extraretinal photoreceptors in mite photoperiodism. In mites equipped with eyes, however, it is not known whether the retinal or extraretinal photoreceptors are involved in photoperiodism. The two-spotted spider mite Tetranychus urticae possesses two pairs of eyes. Adult females of this species terminate diapause in response to long days. To investigate whether the eyes function as photoperiodic photoreceptors in T. urticae, their eyes were ablated using a laser ablation system. Mites with their eyes intact terminated diapause under long days after low temperature exposure, whereas they remained in diapause under short days. Under constant darkness, they did not terminate diapause. When all eyes were removed, the mites remained in diapause even when they were maintained under long days. In contrast, the mites showed clear photoperiodic response when only the anterior or posterior eyes were removed. These results indicate that both the anterior and posterior eyes function as photoreceptors in photoperiodic termination of diapause in T. urticae.  相似文献   

13.
This review examines several controversial aspects of photoperiodism in insects and mites including the role of the circadian system in night length measurement, the nature of apparent hourglass-like responses, and whether or not the circadian component in photoperiodism is the same as that in overt behavioural rhythms. These aspects of the phenomenon are discussed in terms of the entrainment of circadian oscillations by cycles of light and temperature. There is considerable variety of photoperiodic response within the insects (and other arthropods) to show, inter alia, circannual rhythms, internal and external coincidence night length timers, and in some species, non-circadian hourglass-like devices. Many apparent hourglass-like responses, however, could be circadian ‘clocks’ of the external coincidence type involving oscillations that dampen below threshold in extended periods of darkness. The review also concludes that there is little evidence in favour of the “Hourglass clock-oscillator counter” model proposed for the mite Tetranychus urticae by Vaz Nunes and Veerman (1982a). The responses of this species to complex light and temperature cycles may also be interpreted in terms of a damped oscillator version of external coincidence.  相似文献   

14.
The validity of the oscillator-clock hypothesis for photoperiodic time measurement in insects and mites is questioned on the basis of a re-interpretation of available experimental evidence. The possible role of the circadian system in photoperiodism in arthropods is critically reviewed. Apart from the outcome of kinetic experiments, based on diel and non-diel light/dark cycles, evidence from various genetic and physiological experiments is discussed in relation to the oscillator-clock hypothesis. The conclusion is that photoperiodic time measurement in insects and mites is performed by a non-circadian 'hourglass' clock. Experimental evidence suggests a non-clock role for the circadian system in the photoperiodic mechanism of insects and mites.  相似文献   

15.
This review examines some of the models to account for time measurement in insect photoperiodism. It considers the supporting evidence for these models and the attempts to discriminate among them. Although hourglass timers may exist, it is suggested that most photoperiodic mechanisms, including many hourglass‐like timers, are circadian‐based, making Bünning's original hypothesis, that the circadian system somehow provides the essential “clockwork” for photoperiodic timing, the most persuasive unifying principle. The apparent diversity among modern species in their modes of time measurement is probably the result of differences between the underlying circadian systems that were adopted for seasonal night length measurement as the insects, or groups of insects, moved northwards into areas with a pronounced winter season. Photoperiodic time measurement, therefore, exhibits both unity (in their common circadian basis) and diversity in detail. Attention to this diversity may provide invaluable insights into the problem of photoperiodic time measurement at comparative, and molecular, levels.  相似文献   

16.
17.
Appropriate timing of various seasonal processes is crucial to the survival and reproductive success of animals living in temperate regions. When seasonally breeding animals are subjected to annual changes in day length, dramatic changes in neuroendocrine-gonadal activity take place. However, the molecular mechanism underlying the photoperiodic response of gonads remains unknown for all living organisms. It is well known that a circadian clock is somehow involved in the regulation of photoperiodism. Recently, rhythmic expression of circadian clock genes was observed in the mediobasal hypothalamus (MBH) of Japanese quail. The MBH is believed to be the center for photoperiodism. In addition, long-day-induced hormone conversion of the prohormone thyroxine (T(4)) to the bioactive triiodothyronine (T(3)) by deiodinase in the MBH has been proven to be important to the photoperiodic response of the gonads. Although the regulating mechanism for the photoperiodic response of gonads in birds and mammals has long been considered to be quite different, the long-day-induced expression of the deiodinase gene in the hamster hypothalamus suggests the existence of a conserved regulatory mechanism in avian and mammalian photoperiodism.  相似文献   

18.
The photoperiodic calendar is a seasonal time measurement system which allows insects to cope with annual cycles of environmental conditions. Seasonal timing of entry into diapause is the most often studied photoperiodic response of insects. Research on insect photoperiodism has an approximately 80-year-old tradition. Despite that long history, the physiological mechanisms underlying functionality of the photoperiodic calendar remain poorly understood. Thus far, a consensus has not been reached on the role of another time measurement system, the biological circadian clock, in the photoperiodic calendar. Are the two systems physically separated and functionally independent, or do they cooperate, or is it a single system with dual output? The relationship between calendar and clock functions are the focus of this review, with particular emphasis on the potential roles of circadian clock genes, and the circadian clock system as a whole, in the transduction pathway for photoperiodic token stimulus to the overt expression of facultative diapause.  相似文献   

19.
ABSTRACT. Ostrinia nubilalis Hübner is characterized according to the type of diapause exhibited and the structural and physiological changes associated with the diapausing state. Effects of physical factors such as photoperiod, temperature, and relative humidity, as well as physiological and biochemical aspects such as the neurosecretory system and cyclic AMP involvement in diapause induction, maintenance, and break are reviewed. The possible roles of circadian oscillator and hourglass mechanisms associated with photoperiodism and the functioning of the biological clock of the insect are discussed.  相似文献   

20.
Insect photoperiodism and circadian clocks: models and mechanisms   总被引:1,自引:0,他引:1  
Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a "black-box" approach, resulting in numerous cybernetic models. This is in contrast with the circadian clock, which has been dissected pragmatically at the molecular level, particularly in Drosophila. Unfortunately, Drosophila melanogaster, the favorite model organism for circadian studies, does not demonstrate a pronounced seasonal response, and consequently molecular analysis has not progressed in this area. In the current article, the authors explore different ways in which identified molecular components of the circadian pacemaker may play a role in photoperiodism. Future progress in understanding the Drosophila circadian pacemaker, particularly as further output components are identified, may provide a direct link between the clock and photoperiodism. In addition, with improved molecular tools, it is now possible to turn to other insects that have a more dramatic photoperiodic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号