首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral sensitivities of cells in principal eyes of the jumping spider Phidippus reqius were measured using techniques of intracellular recording. Three types of cells were found. UV cells had peak sensitivities at 370 nm and were over 4 log units less sensitive at wavelengths longer than 460 nm. Green-sensitive cells had spectral sensitivities which were well fit by nomogram curves peaking at 532 nm. UV-green cells had dual peaks of sensitivity at about 370 and 525 nm, but the ratios of UV-to-green sensitivities varied over a 40: 1 range from cell to cell. Moreover, responses of UV-green cells to flashes of UV light were slower than to flashes of green light. Segregation of receptor types into the known layers of receptors in these eyes could not be shown. It is concluded that jumping spiders have the potential for dichromatic color vision.  相似文献   

2.
Chromatic cues to trap the oriental fruit fly, Bactrocera dorsalis   总被引:2,自引:0,他引:2  
Various colors have been used as visual cues to trap insect pests. For example, yellow traps for monitoring and control of the oriental fruit fly (Bactrocera dorsalis) have been in use for a very long time. However, the chromatic cue of using color traps has never been meticulously investigated. In this study, the spectral sensitivities of the photoreceptors in the compound eyes of B. dorsalis were measured intracellularly, and the theory of receptor quantum catch was applied to study the chromatic cue of fly attracting. Responses to five wavelength categories with peak wavelengths of 370, 380, 490, and 510 nm, and one with dual peaks at 350 and 490 nm were recorded. Based on spectral sensitivities, six colored papers were chosen to test the color preference of the fly, and an additional UV preference test was done to confirm the effect of the UV stimuli. It was concluded that UV and green stimuli (spectra: 300-380 nm and 500-570 nm) would enhance the attractiveness of a colored paper to the oriental fruit fly, and blue stimuli (380-500 nm) would diminish the attractiveness.  相似文献   

3.
Absorption curves of fresh, intact petals from 18 rose cultivars and 2 species were measured and compared with visual evaluations of their colours and there was a reasonable correlation. The in vivo maxima of anthocyanin absorption were in the range of 520–560 nm. Five patterns of absorption spectrum in the visible region were recognized: (a) maximum range ca. 520–535 rim (red roses); (b) as (a) but low absorbance (pink roses); (c) absorption pattern varying with age of flowers; (d) absorption at long wavelengths in blue roses due to co-pigmentation of cyanin, flavonols; (e) absorption of carotenoids and anthocyanins together in yellow, orange or orange red flowers.  相似文献   

4.
Spectral sensitivity functions of a passeriform bird, the Red-billed Leiothrix Leiothrix lutea (Timalidae) were determined in a behavioural test under different background illuminations.
1.  With photopic illumination the spectral sensitivity of Leiothrix lutea covered the measured range from 320 nm to 680 nm. Four peaks of spectral sensitivity were found: a UV (370 nm), a blue (460 nm), a green (530 nm) and a red (620 nm) sensitivity peak. The spectral sensitivity was highest in the UV and decreased (over the blue and the green peak) towards the red sensitivity peak. The 4 peaks of spectral sensitivity point to 4 underlying cone mechanisms under photopic illumination and thus to a probably tetrachromatic colour vision of Leiothrix lutea.
2.  With mesopic illumination the bird's spectral sensitivity covered the measured range from 320 nm to 680 nm. Neural interactions between cone and rod sensitivities are likely to determine this function. The increased overall sensitivity and a dominant sensitivity peak at 500 nm point to a typical rhodopsin as the likely rod photopigment.
3.  Different aspects of the biological significance of the high UV sensitivity are discussed.
  相似文献   

5.
We studied the spectral and polarisation sensitivities of photoreceptors of the butterfly Colias erate by using intracellular electrophysiological recordings and stimulation with light pulses. We developed a method of response waveform comparison (RWC) for evaluating the effective intensity of the light pulses. We identified one UV, four violet-blue, two green and two red photoreceptor classes. We estimated the peak wavelengths of four rhodopsins to be at about 360, 420, 460 and 560 nm. The four violet-blue classes are presumably based on combinations of two rhodopsins and a violet-absorbing screening pigment. The green classes have reduced sensitivity in the ultraviolet range. The two red classes have primary peaks at about 650 and 665 nm, respectively, and secondary peaks at about 480 nm. The shift of the main peak, so far the largest amongst insects, is presumably achieved by tuning the effective thickness of the red perirhabdomal screening pigment. Polarisation sensitivity of green and red photoreceptors is higher at the secondary than at the main peak. We found a 20-fold variation of sensitivity within the cells of one green class, implying possible photoreceptor subfunctionalisation. We propose an allocation scheme of the receptor classes into the three ventral ommatidial types.  相似文献   

6.
The cigarette beetle, Lasioderma serricorne (Fabricius), is an important pest insect that consumes a variety of dry foods. It is known that UV light traps attract this species. However, less attention has been paid to its preferred wavelength. First, we investigated the spectral sensitivity of the compound eye. Next, we compared the attraction efficiency of LEDs of different colors (wavelengths). Our results showed that ultraviolet (UV, 375 nm) and blue (470 nm) LEDs attracted the most cigarette beetles of both sexes, irrespective of mating or oviposition status, although the UV LED consistently tended to attract the most beetles. Although the primary sensitivity peak of the compound eye was 520 nm, the green LED (520 nm) scarcely attracted beetles. Although the reason for the difference between the peaks in spectral sensitivity and attraction of beetles awaits further studies, whether UV and/or blue LEDs is more effective as a practical light trap for controlling L. serricorne beetle is discussed in this study.  相似文献   

7.
Electroretinographic recordings were made from hatchling loggerhead and leatherback sea turtle eyecup preparations to generate dark-adapted spectral sensitivity curves. Both species were maximally sensitive to wavelengths between 500 and 540 nm, with a secondary peak near 380 nm. The spectral sensitivity curve for leatherbacks was attenuated at the long wavelength end of the spectrum relative to that of the loggerheads. This difference may reflect adaptations to lighting available at the relatively shallow (loggerhead) versus deeper (leatherback) sites where each species forages. The broad spectrum of wavelengths detected by both species (near UV to yellow–orange) indicates that vision is likely mediated by more than one photopigment, potentially rendering these turtles capable of color vision.  相似文献   

8.
Spectral sensitivities were recorded intracellulary in median ocelli of Anax junius, Aeschnatuberculifera, and Libellulapulcella. All cells had peak sensitivities at 360 and 500 nm while UV-blue+green cells found only in Anax had a third peak sensitivity at 440 nm. Ratios of UV-to-green sensitivities varied from cell to cell in each ocellus, but no UV-only or green-only cells were recorded. Half of the cells tested had a reverse Purkinje shift: They were more sensitive in the green at low illuminations but more sensitive in the UV at high illuminations; their intensity-response curves at 370 and 520 nm crossed but became parallel for large responses. Wave-lengths 420 nm and shorter elicited a family of low intensity-response curves with one slope; wavelengths 440 nm and longer elicities a family of curves with another slope. Orange-adapting lights selectively adapted sensitivity in the green, but UV-adapting lights had little selective effect. Amounts of log-selective adaptation were proportional to log orange-adapting intensity. It is concluded that two spectral mechanisms can be recorded from each cell, possibly by coupling of UV and green cells or possibly because each cell contains two visual pigments. Selective chromatic adaptations may provide the ocellus with a kind of "authomatic color control," while the reverse Purkinje shift could extend the ocellus' sensitivity to prevailing skylight.  相似文献   

9.

Background

Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour.

Methodology/Principal Findings

On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue.

Conclusions/Significance

Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region.  相似文献   

10.
1. ERG S(lambda) were determined in dark-adapted intact preparations of 6 North American firefly species (Photinus collustrans, marginellus, pyralis, macdermotti, scintillans and Bicellonycha wickershamorum) which restrict their flashing activity to twilight hours. The curves possess narrow (1/2 bandwidth = 50-60 nm) peaks in the yellow (560-580 nm) and a shoulder in the violet (370-420 nm), with a marked attenuation (1.4-2.2 log units) of sensitivity in the green (480-530 nm) region of the spectrum (Fig. 1). Two additional species (Photuris potomaca and frontalis) which initiate flashing at twilight and continue on late into the night (twi-night) possess broad sensitivity maxima around 560 nm (Fig. 3). 2. Selective adaptation experiments isolated near-UV and yellow in P. scintillans (Fig. 2). In the dorsal frontal region of the compound eyes in P. frontalis, high sensitivity existed only in the short wavelength region (near-UV and blue) with a maximum in the blue (lambda max 435 nm) (Fig. 4). 3. The in situ MSP absorption spectrum of the screening pigments was determined in preparations of firefly retina. a) Two kinds of dark brown granules were found in the clear zone region. These granules absorb all across the spectrum with a gradual increase in optical density in the shorter wavelength region in P. pyralis (Fig. 5). b) Besides dark granules, pink-to-red colored screening pigments were present in the vicinity of the rhabdoms. The absorption spectra of these pigments determined in five species were narrow (1/2 bandwidth = 50-80 nm) with species-specific differences in their peak absorption in the green at 525 nm, 510 nm, 512 nm and 517 nm in P. scintillans, macdermotti, collustrans and pyralis, respectively (Fig. 6). A similar pigment was found in P. marginellus with a lambda max at 512 nm (Fig. 7). In all cases, transmission increased both at long and short wavelengths, but more sharply in the long wavelength region (Figs. 6 and 7). Hence each twilight-restricted species has its own unique colored screening pigment. A yellow pigment whose absorption spectrum differed from those found in genus Photinus was found in twi-night active Photuris potomaca (lambda max 461 nm) and night-active P. versicolor (lambda max 456 nm). The transmission of the Photuris pigment increased sharply only in the long wave-length region (Fig. 8).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
《Journal of Asia》2007,10(1):27-31
The eyes of male and female Rhagophthalmus ohbai are of very different sizes and possess approximately 3000 and 35 facets, respectively. In the male eye one can distinguish a smaller dorsal region with 500 facets and a larger ventral one with ca. 1800. Ultrastructural differences between them have been described earlier in this journal (Lau and Meyer-Rochow, 2006). Electrophysiological recordings from the two eye areas have now revealed that the ventral region is maximally sensitive to light of 600 nm wavelength, while the dorsal eye region responds maximally to light of 540–560 nm wavelengths. In the dorsal eye region sensitivity to UV-radiation at around 360 nm wavelength, being twice as high as that of the ventral eye region, amounted to ca. one quarter of peak wavelength sensitivity. The regional differences in spectral sensitivity seem to be a reflection of the different tasks of the two eye regions: looking downward to see the yellow light emitted by a female, sensitivity towards longer wavelengths would be advantageous, but looking upward into the twilight sky, sensitivity to shorter wavelength would be a more appropriate adaptation.  相似文献   

12.
ERGs were recorded from the dorsal sector of dark- and chromatic-adapted compound eyes in the dark-active firefly Photuris versicolor ♀ and ♂ at different wavelengths across the spectrum ranging from 320 nm to 700 nm over 4.5 log units of change in the stimulus intensity. ERG elicited by white light stimulus was an on-negative monophasic wave typical of scotopic eyes. ERGs elicited by chromatic stimuli differed in their waveform characteristics in the short (near-u.v. and violet) and long (green-yellow) wavelengths. The slope of the intensity-response curves at different stimulus wavelengths were similar for phasic response and differed for the plateau component of the ERG. The spectral sensitivity curves obtained under dark- and chromatic-adapted conditions revealed peaks in the near-u.v. (λmax, 380 nm) and in the green (λmax 550 nm), suggesting the presence of at least two receptor types in the dorsal sector of the compound eyes of P. versicolor. The green (550 nm) peak corresponds with the species bioluminescence emission peak (552 nm).  相似文献   

13.
Summary This study reports photopic spectral sensitivity curves (351–709 nm) for four individual roach,Rutilus rutilus, determined by two choice appetitive training. All four curves show four sensitivity maxima at 361–398 nm, 421–448 nm, 501–544 nm and 634–666 nm which are related to the four known roach photopic visual pigments (Avery et al. 1982). The overall shape of the curves at long wavelengths indicates inhibitory interactions between the red and green cone mechanisms. That the high behavioural sensitivity in the UV is caused by a specific ultraviolet visual pigment and is not due to aberrant stimulation of the other cone types is shown by the redetermination of spectral sensitivity at short wavelengths (351–501 nm) following the selective bleaching of the three longer wavelength visual pigments. This depresses the blue sensitivity to a greater degree than the relatively unaffected UV sensitivity maximum. Spectral transmission data from two corneas and four lenses show that they transmit considerable amounts of light in the near UV.  相似文献   

14.
The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12–13 nm in B. impatiens compared to B. terrestris.  相似文献   

15.
The spectral sensitivities of 12 species of mesopelagic crustaceans were studied by means of electrophysiological recordings. Nine of the species are vertical migrators, while 3 are not, and 9 species possess bioluminescent organs, while 3 are not bioluminescent. All species had a single peak of spectral sensitivity with maxima between 470 nm and 500 nm. There was no apparent correlation between sensitivity maxima and daytime depth distribution, migratory behavior, or the presence or absence of bioluminescent organs. With the exception of the hyperiid amphipod Phronima sedentaria, the spectral sensitivities of these mesopelagic crustaceans demonstrate a better match for maximum sensitivity to bioluminescence than to downwelling light. Accepted: 29 June 1999  相似文献   

16.
Action spectra for photosynthesis in higher plants   总被引:5,自引:0,他引:5  
The action and quantum yield spectra of photosynthetic CO2 uptakeand the absorptance spectrum were determined for leaves of 33species of higher plant including 7 arbores over the wavelengthrange 344–758 nm, to interpret various curves of the spectralresponses. Almost the same curves either in the action or quantumyeild spectra were obtained for all the plants tested exceptin the ultraviolet (UV) and blue regions where the responserelative to the red maximum was significantly lower in the arboreousthan in herbaceous plants. The lower action in the UV and bluewas seen in leaves having higher absorptance in the green, anda very close correlation (r=–0.920) was found betweenthe ratio of action at 435 nm to that at 560 nm and the absorptanceat 560 nm (A560). These facts proved that the variation of actionspectra in the range from the UV to the green depended largelyon the differences in absorptance of leaves in the green, anda curve with a pronounced second peak in the blue could be obtainedwhen the A560 was less than about 0.6. (Received October 3, 1975; )  相似文献   

17.
The pollen beetle Meligethes aeneus Fabricius (Coleoptera, Nitidulidae), a pest of oilseed rape (Brassica napus), is known to respond to coloured stimuli; however, current understanding of the underlying mechanisms of colour choice in this species is limited. In the present study, physiological and behavioural experiments are conducted to determine the response of the pollen beetle to colours in the field. Spectral sensitivity is measured in 10 animals using the electroretinogram technique. Light flashes (100 ms) at varied wavelengths (340–650 nm, 10‐nm steps) and at different light intensities are applied to the eye after dark adaptation. In behavioural experiments in the field, 100 water traps of varying colours (from yellow to green to blue with varying amounts of white and black added, and with known spectral reflectance) are set out on a bare soil field in May 2008. The mean spectral sensitivity curve of M. aeneus peaks at 520 nm; however, a model template fitted to the long wavelength tail of the observed curve reveals a peak at approximately 540 nm (green). A secondary sensitivity peak is observed in the ultraviolet (UV) range (370 nm). A total of 2482 pollen beetles are captured in the coloured traps. The results show that the pollen beetles' preference for yellow over other colours can be modelled as a colour opponent mechanism (green versus blue); however, further experiments are needed to specify responses to colours with higher UV reflectance. These findings may be used to optimize trap colours for monitoring to help develop integrated pest management strategies for pollen beetle control.  相似文献   

18.
The relative reflectance spectra for control and treated (surface wiped) current-year foliage of Douglas fir, and Sitka, Colorado, and Blue spruce (Pseudotsuga menziesii [Mirb.] Franco, Picea sitchensis [Bong.] Carr., Picea pungens Engelm., and Picea pungens Engelm. var. hoopsii, respectively) were obtained from 220 to 700 nm. The green color of the control foliage of both Douglas fir and Sitka spruce was unaffected by the treatment whereas the blue-green and blue-white foliage of control Colorado and Blue spruce, respectively, became “green” as a result of the wiping. The relative reflectance curves for all green foliage, including the treated Colorado and Blue spruce, were all very similar with a peak in the green (540-560 nm), minima in the red (660-680 nm) and blue (450-500 nm), and very low reflectivities in the ultraviolet (λ < 400 nm). In contrast, the control foliage for Colorado and Blue spruce both showed a generally higher relative reflectance over most of the visible spectrum (400-700 nm) with a marked increase in the blue region (400-500 nm). At wavelengths below 420 nm, their relative reflectances increased sharply with decreasing wavelength, the reflectance at 220 nm for Blue spruce being over four times that at 540 nm.  相似文献   

19.
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.  相似文献   

20.
Spectral Sensitivities of Wolf Spider Eyes   总被引:5,自引:5,他引:0       下载免费PDF全文
ERG's to spectral lights were recorded from all eyes of intact wolf spiders. Secondary eyes have maximum relative sensitivities at 505–510 nm which are unchanged by chromatic adaptations. Principal eyes have ultraviolet sensitivities which are 10 to 100 times greater at 380 nm than at 505 nm. However, two animals' eyes initially had greater blue-green sensitivities, then in 7 to 10 wk dropped 4 to 6 log units in absolute sensitivity in the visible, less in the ultraviolet. Chromatic adaptations of both types of principal eyes hardly changed relative spectral sensitivities. Small decreases in relative sensitivity in the visible with orange adaptations were possibly retinomotor in origin. Second peaks in ERG waveforms were elicited from ultraviolet-adapted principal eyes by wavelengths 400 nm and longer, and from blue-, yellow-, and orange-adapted secondary eyes by wavelengths 580 nm and longer. The second peaks in waveforms were most likely responses of unilluminated eyes to scattered light. It is concluded that both principal and secondary eyes contain cells with a visual pigment absorbing maximally at 505–510 nm. The variable absolute and ultraviolet sensitivities of principal eyes may be due to a second pigment in the same cells or to an ultraviolet-absorbing accessory pigment which excites the 505 nm absorbing visual pigment by radiationless energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号