首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pregnane X receptor (PXR) is the molecular target for a wide variety of endogenous and xenobiotic compounds. It regulates the expression of genes central to the detoxification (cytochrome P-450 enzymes) and excretion (xenobiotic transporters) of potentially harmful compounds. The aim of the present investigation was to determine the role of PXR in regulation of high-density lipoprotein (HDL) cholesterol metabolism by studying its impact on ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression in hepatocytes. ABCA1 and SR-BI are major factors in the exchange of cholesterol between cells and HDL. Expression analyses were performed using Western blotting and quantitative real time RT-PCR. Luciferase reporter gene assays were used to measure promoter activities. Total cholesterol was measured enzymatically after lipid extraction (Folch's method). The expression of ABCA1 and SR-BI was inhibited by the PXR activators rifampicin and lithocholic acid (LCA) in HepG2 cells and pregnenolone 16alpha-carbonitrile (PCN) in primary rat hepatocytes. Thus, PXR appears to be a regulator of hepatic cholesterol transport by inhibiting genes central to cholesterol uptake (SR-BI) and efflux (ABCA1).  相似文献   

2.
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.  相似文献   

3.
Despite extensive studies and characterizations of the high density lipoprotein-cholesteryl ester (HDL-CE)-selective uptake pathway, the mechanisms by which the hydrophobic CE molecules are transferred from the HDL particle to the plasma membrane have remained elusive, until the discovery that scavenger receptor BI (SR-BI) plays an important role. To elucidate the molecular mechanism, we examined the quantitative relationships between the binding of HDL and the selective uptake of its CE in the murine adrenal Y1-BS1 cell line. A comparison of concentration dependences shows that half-maximal high affinity cell association of HDL occurs at 8.7 +/- 4.7 micrograms/ml and the Km of HDL-CE-selective uptake is 4.5 +/- 1.5 micrograms/ml. These values are similar, and there is a very high correlation between these two processes (r2 = 0.98), suggesting that they are linked. An examination of lipid uptake from reconstituted HDL particles of defined composition and size shows that there is a non-stoichiometric uptake of HDL lipid components, with CE being preferred over the major HDL phospholipids, phosphatidylcholine and sphingomyelin. Comparison of the rates of selective uptake of different classes of phospholipid in this system gives the ranking: phosphatidylserine > phosphatidylcholine approximately phosphatidylinositol > sphingomyelin. The rate of CE-selective uptake from donor particles is proportional to the amount of CE initially present in the particles, suggesting a mechanism in which CE moves down its concentration gradient from HDL particles docked on SR-BI into the cell plasma membrane. The activation energy for CE uptake from either HDL3 or reconstituted HDL is about 9 kcal/mol, indicating that HDL-CE uptake occurs via a non-aqueous pathway. HDL binding to SR-BI allows access of CE molecules to a "channel" formed by the receptor from which water is excluded and along which HDL-CE molecules move down their concentration gradient into the cell plasma membrane.  相似文献   

4.
Hypochlorous acid/hypochlorite (HOCl/OCl(-)), a potent oxidant generated in vivo by the myeloperoxidase-H(2)O(2)-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H(2)O(2)-halide system contributes to oxidative damage of HDL in vivo.  相似文献   

5.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

6.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

7.
8.
Human atherosclerotic lesions contain mast cells filled with the neutral protease chymase. Here we studied the effect of human chymase on (i) phospholipid transfer protein (PLTP)-mediated phospholipid (PL) transfer activity, and (ii) the ability of PLTP to generate pre-beta-high density lipoprotein (HDL). Immunoblot analysis of PLTP after incubation with chymase for 6 h revealed, in addition to the original 80-kDa band, four specific proteolytic fragments of PLTP with approximate molecular masses of 70, 52, 48, and 31 kDa. This specific pattern of PLTP degradation remained stable for at least 24 h of incubation with chymase. Such proteolyzed PLTP had reduced ability (i) to transfer PL from liposome donor particles to acceptor HDL(3) particles, and (ii) to facilitate the formation of pre-beta-HDL. However, when PLTP was incubated with chymase in the presence of HDL(3), only one major cleavage product of PLTP (48 kDa) was generated, and PL transfer activity was almost fully preserved. Moreover, chymase effectively depleted the pre-beta-HDL particles generated from HDL(3) by PLTP and significantly inhibited the high affinity component of cholesterol efflux from macrophage foam cells. These results suggest that the mast cells in human atherosclerotic lesions, by secreting chymase, may prevent PLTP-dependent formation of pre-beta-HDL particles from HDL(3) and so impair the anti-atherogenic function of PLTP.  相似文献   

9.
10.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

11.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

12.
The mechanism of formation of high density lipoprotein (HDL) particles by the action of ATP-binding cassette transporter A1 (ABCA1) is not defined completely. To address this issue, we monitored efflux to apoA-I of phosphatidylcholine (PC), sphingomyelin (SM), and unesterified (free) cholesterol (FC) from J774 macrophages, in which ABCA1 is up-regulated, and investigated the nature of the particles formed. The various apoA-I/lipid particles appearing in the extracellular medium were separated by gel filtration chromatography. The presence of apoA-I in the extracellular medium led to the simultaneous formation of more than one type of poorly lipidated apoA-I-containing particle: there were 9- and 12-nm diameter particles containing approximately 3:1 and 1:1 phospholipid/FC (mol/mol), respectively, which were present together with 6-nm monomeric apoA-I. Removal of the C-terminal alpha-helix (residues 223-243) of apoA-I reduced phospholipid and FC efflux and prevented formation of the 9- and 12-nm HDL particles; the apoA-I variant formed larger particles that eluted in the void volume. FC loading of the J774 cells also led to the formation of larger apoA-I-containing particles that were highly enriched in FC. Besides creating HDL particles, ABCA1 mediated release of larger (20-450-nm diameter) FC-rich particles that were not involved in HDL formation and that are probably membrane vesicles. These particles contained 1:1 PC/SM in contrast to the HDL particles, which contained 2:1 PC/SM. This is consistent with lipid raft and non-raft plasma membrane domains being involved primarily in ABCA1-mediated vesicle release and nascent HDL formation, respectively.  相似文献   

13.
14.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

15.
We have mapped the domains of lipid-free apoA-I that promote cAMP-dependent and cAMP-independent cholesterol and phospholipid efflux. The cAMP-dependent lipid efflux in J774 mouse macrophages was decreased by approximately 80-92% by apoA-I[delta(185-243)], only by 15% by apoA-I[delta(1-41)] or apoA-I[delta(1-59)], and was restored to 75-80% of the wild-type apoA-I control value by double deletion mutants apoA-I[delta(1-41)delta(185-243)] and apoA-I[delta(1-59)delta(185-243)]. Similar results were obtained in HEK293 cells transfected with an ATP-binding cassette transporter A1 (ABCA1) expression plasmid. The double deletion mutant of apoA-I had reduced thermal and chemical stability compared with wild-type apoA-I. Sequential carboxyl-terminal deletions showed that cAMP-dependent cholesterol efflux was diminished in all the mutants tested, except the apoA-I[delta(232-243)] which had normal cholesterol efflux. In cAMP-untreated or in mock-transfected cells, cholesterol efflux was not affected by the amino-terminal deletions, but decreased by 30-40% and 50-65% by the carboxyl-terminal and double deletions, respectively. After adenovirus-mediated gene transfer in apoA-I-deficient mice, wild-type apoA-I and apoA-I[delta(1-41)] formed spherical high density lipoprotein (HDL) particles, whereas apoA-I[delta(1-41)delta(185-243)] formed discoidal HDL. The findings suggest that although the central helices of apoA-I alone can promote ABCA1-mediated lipid efflux, residues 220-231 are necessary to allow functional interactions between the full-length apoA-I and ABCA1 that are required for lipid efflux and HDL biogenesis.  相似文献   

16.
Scavenger receptor class B, type I (SR-BI)/ApoE double null mice develop severe atherosclerosis within 4 weeks, whereas ApoE null mice take several months to develop the disease, indicating that SR-BI plays a pivotal role in atherosclerosis. Importantly, SR-BI/ApoE double null mice have lower plasma cholesterol levels than ApoE null mice, suggesting involvement of a non-lipids mechanism. In the present study, we revealed a novel ligand-independent apoptotic pathway induced by SR-BI, and regulated by endothelial nitric-oxide synthase (eNOS) and high density lipoprotein (HDL). SR-BI significantly induces apoptosis in three independent cell systems. In contrast to known ligand-dependent apoptotic pathways, SR-BI-induced apoptosis is ligand-independent. We further showed that SR-BI-induced apoptosis is suppressed by eNOS and HDL. By using a single site mutation, we demonstrated that SR-BI induces apoptosis through a highly conserved CXXS redox motif. We finally demonstrated that SR-BI-induced apoptosis is via the caspase-8 pathway. We hypothesize that in healthy cells, the SR-BI apoptotic pathway is turned off by eNOS and HDL which prevents inappropriate apoptotic damage to the vascular wall. When HDL levels are low, oxidative stress causes the relocation of eNOS away from caveolae, which turns on SR-BI-induced apoptosis and rapidly clears damaged cells to prevent further inflammatory damage to neighboring cells. The current studies offer a new paradigm in which to study the non-cholesterol effects of SR-BI, HDL, and eNOS on the development of atherosclerosis and potentially other cardiovascular diseases.  相似文献   

17.
High density lipoprotein (HDL) levels are inversely proportional to the risk of coronary heart disease. HDL mediates various anti-atherogenic pathways including reverse cholesterol transport from cells of the arterial wall to the liver and steroidogenic tissues. In addition HDL activates various intracellular signaling events that confer atheroprotection. The HDL receptor, scavenger receptor class B type I (SR-BI) has been implicated directly and indirectly in HDL induced signaling. The aim of this review is to summarize the role of SR-BI in HDL induced signaling in the vasculature.  相似文献   

18.
The murine class B, type I scavenger receptor mSR-BI is a high and low density lipoprotein (HDL and LDL) receptor that mediates selective uptake of cholesteryl esters. Here we describe a reconstituted phospholipid/cholesterol liposome assay of the binding and selective uptake activities of SR-BI derived from detergent-solubilized cells. The assay, employing lysates from epitope-tagged receptor (mSR-BI-t1)-expressing mammalian and insect cells, recapitulated many features of SR-BI activity in intact cells, including high affinity and saturable (125)I-HDL binding, selective lipid uptake from [(3)H]cholesteryl ether-labeled HDL, and poor inhibition of HDL receptor activity by LDL. The novel properties of a mutated receptor (Q402R/Q418R, normal LDL binding but loss of most HDL binding) were reproduced in the assay, as was the ability of the SR-BI homologue CD36 to bind HDL but not mediate efficient lipid uptake. In this assay, essentially homogeneously pure mSR-BI-t1, prepared by single-step immunoaffinity chromatography, mediated high affinity HDL binding and efficient selective lipid uptake from HDL. Thus, SR-BI-mediated HDL binding and selective lipid uptake are intrinsic properties of the receptor that do not require the intervention of other proteins or specific cellular structures or compartments.  相似文献   

19.
ATP-binding cassette transporter 1 (ABCA1), the defective transporter in Tangier disease, binds and promotes cellular cholesterol and phospholipid efflux to apolipoprotein I (apoA-I). Based on a high degree of sequence homology between ABCA1 and ABCA7, a transporter of unknown function, we investigated the possibility that ABCA7 might be involved in apolipoprotein binding and lipid efflux. Similarly to cells expressing ABCA1, HEK293 cells overexpressing ABCA7 showed specific binding and cross-linking of lipid-poor apoA-I. ABCA7 expression increased cellular phosphatidylcholine and sphingomyelin efflux to apoA-I in a manner similar to ABCA1 but had no effect on cholesterol efflux. Western analysis showed a high protein level of ABCA7 in mouse spleen, lung, adrenal, and brain but low expression in liver. In contrast to ABCA1, ABCA7 showed moderate basal mRNA and protein levels in macrophages and lymphocytes but no induction by liver X receptor activation. These studies show that ABCA7 has the ability to bind apolipoproteins and promote efflux of cellular phospholipids without cholesterol, and they suggest a possible role of ABCA7 in cellular phospholipid metabolism in peripheral tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号