首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IFN-gamma has significant immunoregulatory activity and plays an important role in both innate and adaptive immunity. Additive effects of IFN-gamma and the Toll-like receptor ligand LPS has been investigated in macrophages, but in fibroblasts is incompletely understood. IFN-gamma and LPS synergistically induced MCP-1 and NO release in primary murine dermal fibroblasts. IFN-gamma enhanced LPS-induced JNK and p38 MAPK phosphorylation but had no effect on NF-kappaB activity. The induction of both MCP-1 and NO was attenuated by inhibition of JNK but not p38 MAPK. Serine 727 STAT1 phosphorylation by IFN-gamma was increased by LPS, and this was also attenuated by inhibition of JNK but not p38 MAPK. IFN-gamma inhibited the basal expression of MAPK phosphatase-1, a negative regulator of MAPK signaling pathway. These results suggest that enhancement of LPS-induced JNK activation by IFN-gamma associated with inhibition of MAPK phosphatase-1 may be one of the mechanisms of additive effects between IFN-gamma and LPS in fibroblasts.  相似文献   

2.
Cutting edge: TLR2 directly triggers Th1 effector functions   总被引:2,自引:0,他引:2  
Toll-like receptors recognize pathogen-associated molecular patterns, activate innate immunity, and consequently modulate adaptive immunity in response to infections. TLRs are also expressed on T cells, and it has been shown that T cell activation is modulated by TLR ligands. However, the functions of TLRs on Th1 and Th2 effector cells and the molecular mechanisms underlying TLR-mediated activation are not fully understood. We analyzed TLR functions and downstream signaling events in both effector T cells. In mouse Th1 cells the stimulation by TLR2 but not by other TLRs directly induced IFN-gamma production, cell proliferation, and cell survival without TCR stimulation, and these effects were greatly enhanced by IL-2 or IL-12 through the enhanced activation of MAPKs. In contrast, no TLR affected the function of effector Th2 cells. These results identify TLR2 as a new specific activator of Th1 cell function and imply the involvement in Th1-mediated responses.  相似文献   

3.
Whole cell pertussis vaccines (Pw) induce Th1 responses and protect against Bordetella pertussis infection, whereas pertussis acellular vaccines (Pa) induce Ab and Th2-biased responses and also protect against severe disease. In this study, we show that Pw failed to generate protective immunity in TLR4-defective C3H/HeJ mice. In contrast, protection induced with Pa was compromised, but not completely abrogated, in C3H/HeJ mice. Immunization with Pw, but not Pa, induced a population of IL-17-producing T cells (Th-17), as well as Th1 cells. Ag-specific IL-17 and IFN-gamma production was significantly lower in Pw-immunized TLR4-defective mice. Furthermore, treatment with neutralizing anti-IL-17 Ab immediately before and after B. pertussis challenge significantly reduced the protective efficacy of Pw. Stimulation of dendritic cells (DC) with Pw promoted IL-23, IL-12, IL-1beta, and TNF-alpha production, which was impaired in DC from TLR4-defective mice. B. pertussis LPS, which is present in high concentrations in Pw, induced IL-23 production by DC, which enhanced IL-17 secretion by T cells, but the induction of Th-17 cells was also dependent on IL-1. In addition, we identified a new effector function for IL-17, activating macrophage killing of B. pertussis, and this bactericidal activity was less efficient in macrophages from TLR4-defective mice. These data provide the first definitive evidence of a role for TLRs in protective immunity induced by a human vaccine. Our findings also demonstrate that activation of innate immune cells through TLR4 helps to direct the induction of Th1 and Th-17 cells, which mediate protective cellular immunity to B. pertussis.  相似文献   

4.
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.  相似文献   

5.
TLR-induced innate immunity and inflammation are mediated by signaling cascades leading to activation of the MAPK family of Ser/Thr protein kinases, including p38 MAPK, which controls cytokine release during innate and adoptive immune responses. Failure to terminate such inflammatory reactions may lead to detrimental systemic effects, including septic shock and autoimmunity. In this study, we provide genetic evidence of a critical and nonredundant role of MAPK phosphatase (MKP)-1 in the negative control of MAPK-regulated inflammatory reactions in vivo. MKP-1-/- mice are hyperresponsive to low-dose LPS-induced toxicity and exhibit significantly increased serum TNF-alpha, IL-6, IL-12, MCP-1, IFN-gamma, and IL-10 levels after systemic administration of LPS. Furthermore, absence of MKP-1 increases systemic levels of proinflammatory cytokines and exacerbates disease development in a mouse model of rheumatoid arthritis. When activated through TLR2, TLR3, TLR4, TLR5, and TLR9, bone marrow-derived MKP-1-/- macrophages exhibit increased cytokine production and elevated expression of the differentiation markers B7.2 (CD86) and CD40. MKP-1-deficient macrophages also show enhanced constitutive and TLR-induced activation of p38 MAPK. Based on these findings, we propose that MKP-1 is an essential component of the intracellular homeostasis that controls the threshold and magnitude of p38 MAPK activation in macrophages, and inflammatory conditions accentuate the significance of this regulatory function.  相似文献   

6.
CD4+CD25+ T regulatory (Treg) cells play a central role in the suppression of immune response and prevention of autoimmune reactions. Pathogen recognition receptors expressed by immune cells, such as TLRs, may provide a critical link between the innate and adaptive immune systems. There is also evidence that TLR ligands can directly modulate the suppressive capacity of Treg cells. Here, we showed that CD4+CD25+ Treg cells affect neutrophil function and survival and that the TLR4 ligand is involved in the regulation of the cell interactions. We found that LPS-activated Treg cells inhibit reactive oxygen intermediates and cytokine production by neutrophils. Moreover, Treg cells reverse LPS-induced survival of neutrophils and promote their apoptosis and death. We also found that TCR-activated Treg cells induce the same effects on polymorphonuclear neutrophils as those achieved by TLR4 stimulation. Importantly, the suppressive potential of CD4+CD25+ Treg cells induced by LPS seems to be partially IL-10 and TGF-beta dependent, whereas anti-CD3/CD28 stimulation is rather contact dependent. Together, these observations suggest that Treg cells have the ability to directly regulate neutrophil function and life span when both types of the cells are exposed to LPS.  相似文献   

7.
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response.  相似文献   

8.
We investigated the expression of a panel of Toll-like receptors (TLRs) and their functions in human eosinophils. Eosinophils constitutively expressed TLR1, TLR4, TLR7, TLR9, and TLR10 mRNAs (TLR4 greater than TLR1, TLR7, TLR9, and TLR10 greater than TLR6). In contrast, neutrophils expressed a larger variety of TLR mRNAs (TLR1, TLR2, TLR4, TLR6, TLR8 greater than TLR5, TLR9, and TLR10 greater than TLR7). Although the expression levels in eosinophils were generally less prominent compared with those in neutrophils, eosinophils expressed a higher level of TLR7. Furthermore, among various TLR ligands (S-(2,3-bis(palmitoyloxy)-(2-RS)-propyl)-N-palmitoyl-Cys-Ser-(Lys)(4), poly(I:C), LPS, R-848, and CpG DNA), only R-848, a ligand of TLR7 and TLR8, regulated adhesion molecule (CD11b and L-selectin) expression, prolonged survival, and induced superoxide generation in eosinophils. Stimulation of eosinophils by R-848 led to p38 mitogen-activated protein kinase activation, and SB203580, a p38 mitogen-activated protein kinase inhibitor, almost completely attenuated R-848-induced superoxide generation. Although TLR8 mRNA expression was hardly detectable in freshly isolated eosinophils, mRNA expression of TLR8 as well as TLR7 was exclusively up-regulated by IFN-gamma but not by either IL-4 or IL-5. The up-regulation of the TLRs by IFN-gamma had potentially functional significance: the extent of R-848-induced modulation of adhesion molecule expression was significantly greater in cells treated with IFN-gamma compared with untreated cells. Although the natural ligands for TLR7 and TLR8 have not yet been identified, our results suggest that eosinophil TLR7/8 systems represent a potentially important mechanism of a host-defensive role against viral infection and mechanism linking exacerbation of allergic inflammation and viral infection.  相似文献   

9.
Severe injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.  相似文献   

10.
11.
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.  相似文献   

12.
13.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

14.
Toll-like receptors (TLRs) that recognize pathogen associated molecular patterns and chemoattractant receptors (CKRs) that orchestrate leukocyte migration to infected tissue are two arms of host innate immunity. Although TLR signaling induces synthesis and secretion of proinflammatory cytokines and chemokines, which recruit leukocytes, many studies have reported the paradoxical observation that TLR stimulation inhibits leukocyte chemotaxis in vitro and impairs their recruitment to tissues during sepsis. There is consensus that physical loss of chemokine receptor (CKR) at the RNA or protein level or receptor usage switching are the mechanisms underlying this effect. We show here that a brief (<15 min) stimulation with LPS (lipopolysaccharide) at ~0.2 ng/ml inhibited chemotactic response from CCR2, CXCR4 and FPR receptors in monocytes without downmodulation of receptors. A 3 min LPS pre-treatment abolished the polarized accumulation of F-actin, integrins and PIP(3) (phosphatidylinositol-3,4,5-trisphosphate) in response to chemokines in monocytes, but not in polymorphonuclear neutrophils (PMNs). If chemoattractants were added before or simultaneously with LPS, chemotactic polarization was preserved. LPS did not alter the initial G-protein signaling, or endocytosis kinetics of agonist-occupied chemoattractant receptors (CKRs). The chemotaxis arrest did not result from downmodulation of receptors or from inordinate increase in adhesion. LPS induced rapid p38 MAPK activation, global redistribution of activated Rap1 (Ras-proximate-1 or Ras-related protein 1) GTPase and Rap1GEF (guanylate exchange factor) Epac1 (exchange proteins activated by cyclic AMP) and disruption of intracellular gradient. Co-inhibition of p38 MAPK and Rap1 GTPase reversed the LPS induced breakdown of chemotaxis suggesting that LPS effect requires the combined function of p38 MAPK and Rap1 GTPase.  相似文献   

15.
IL-18 is an essential cytokine for both innate and adaptive immunity. Signaling by IL-18 requires IL-18Ralpha, which binds specifically to the ligand and contains sequence homology to IL-1R and TLRs. It is well established that IL-1R signaling requires an accessory cell surface protein, AcP. Other accessory proteins also exist with roles in regulating TLR signaling, but some have inhibitory functions. An AcP-like molecule (AcPL) has been identified with the ability to cooperate with IL-18Ralpha in vitro; however, the physiological function of AcPL remains unknown. In this study, we demonstrate that IL-18 signals are abolished in AcPL-deficient mice and cells. Splenocytes from mutant mice fail to respond to IL-18-induced proliferation and IFN-gamma production. In particular, Th1 cells lacking AcPL fail to produce IFN-gamma in response to IL-18. AcPL-deficient neutrophils also fail to respond to IL-18-induced activation and cytokine production. Furthermore, AcPL is required for NK-mediated cytotoxicity induced by in vivo IL-18 stimulation. However, AcPL is dispensable for the activation or inhibition of IL-1R and the various TLR signals that we have examined. These results suggest that AcPL is a critical and specific cell surface receptor that is required for IL-18 signaling.  相似文献   

16.
Toll-like receptors (TLRs) recognise specific molecular signatures of pathogens and trigger antimicrobial defence responses. Thereby, two independent signalling pathways can be distinguished: The inflammatory signalling pathway acting via the adapter molecule MyD88, leading to the activation of nuclear factor-κB (NF-κB) and mitogen activated protein kinases (MAPK) such as SAPK/JNK and p38 MAPK and the interferon (IFN) dependent pathway that signals via TRIF and results in the production of IFN-α/β. Several evolutionarily conserved molecular patterns are expressed by pathogens, leading to the question if concerted targeting of different TLRs may induce exaggerated immune responses by signalling via both TLR pathways. Here we report that monocyte-derived dendritic cells (MoDCs) combine and integrate signals received via the IFN-dependent pathway by engagement of TLR3 (poly I:C) and activation of TRIF with the MyD88-dependent pathway by ligation of TLR2 (PGN), TLR2/TLR6 (zymosan) and TLR5 (flagellin). The generally low IL-12p70 inducers resulted in combination of both pathways in cytokine levels similar to LPS, which acts via TLR4 and induces recruitment of MyD88/Tirap and TRIF/TRAM adapter proteins. The combination of TLR3 (poly I:C) or TLR4 (LPS) engagement with TLR8 (R848) ligation induced synergistic effects on cytokine production with a boost especially in IL-12p70 secretion. SB203580, a specific p38 MAPK inhibitor, completely blocked TLR ligand mediated IL-12p70 secretion, whereby specific inhibitors for SAPK/JNK (SP600125) and NF-κB (PDTC) only repressed partially the IL-12p70 secretion. Enhanced phosphorylation in poly I:C and R848 activated MoDCs revealed the critical contribution of p38 MAPK in synergistically induced IL-12p70 induction. Further investigation of primary and recall CD8+ T cell responses to the MUC12-20 M1.2 peptide LLLLTVLTV and the influenza A virus matrix58-66 peptide GILGFVFTL proved that synergistically activated MoDCs were superior compared with LPS or R848 alone. The results indicate that dendritic cells process, combine and integrate signals delivered by pathogens to launch effective adaptive immune responses.  相似文献   

17.
Dendritic cells (DCs) are professional antigen-presenting cells that play a vital role in shaping adaptive immunity. DC maturation begins when exogenous danger signals bind to the appropriate toll-like receptor (TLR) and initiate expression of cell surface markers and the secretion of cytokines. This process occurs through defined mitogen-activated protein kinase (MAPK) signalling pathways. Of the 13 known mammalian TLRs, lipopolysaccharide (LPS), which activates TLR4, is the most commonly used ligand for the maturation of DCs in vitro. This comprehensive study measures cytokine secretion and cell surface marker expression in murine bone-marrow-derived DCs following maturation with LPS compared to DCs matured with a panel of other TLR-ligands (zymosan A (TLR2/6), PGN (TLR2), poly(I:C) (TLR3), flagellin (TLR5) and CpG-ODN1826 (TLR9)). The role of MAPK signalling pathways in the maturation process was also examined. Results demonstrate that zymosan A and CpG induce comparable cytokine and cell surface marker profiles to LPS. The remaining ligands differed significantly for cytokine and CD40 expression, but not for CD80 and CD86 expression. While there were differences for MAPK signalling pathways for all ligands, the effect of the inhibitors were broadly similar. These findings broaden our knowledge of TLR ligand-matured DCs.  相似文献   

18.
Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1beta, IFN-gamma, or TNF-alpha significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-kappaB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens.  相似文献   

19.
Opportunistic infections are common in HIV-infected patients; they activate HIV replication and contribute to disease progression. In the present study we examined the role of Toll-like receptor 2 (TLR2) and TLR9 in HIV-long terminal repeat (HIV-LTR) trans-activation and assessed whether TLR4 synergized with TLR2 or TLR9 to induce HIV replication. Soluble Mycobacterium tuberculosis factor (STF) and phenol-soluble modulin from Staphylococcus epidermidis induced HIV-LTR trans-activation in human microvessel endothelial cells cotransfected with TLR2 cDNA. Stimulation of ex vivo spleen cells from HIV-1 transgenic mice with TLR4, TLR2, and TLR9 ligands (LPS, STF, and CpG DNA, respectively) induced p24 Ag production in a dose-dependent manner. Costimulation of HIV-1 transgenic mice spleen cells with LPS and STF or CpG DNA induced TNF-alpha and IFN-gamma production in a synergistic manner and p24 production in an additive fashion. In the THP-1 human monocytic cell line stably expressing the HIV-LTR-luciferase construct, LPS and STF also induced HIV-LTR trans-activation in an additive manner. This is the first time that TLR2 and TLR9 and costimulation of TLRs have been shown to induce HIV replication. Together these results underscore the importance of TLRs in bacterial Ag- and CpG DNA-induced HIV-LTR trans-activation and HIV replication. These observations may be important in understanding the role of the innate immune system and the molecular mechanisms involved in the increased HIV replication and HIV disease progression associated with multiple opportunistic infections.  相似文献   

20.
B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR) and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs) also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号