首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.  相似文献   

2.
m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes.  相似文献   

3.
Immunoglobulin (Ig) superfamily members are abundant with diverse functions including cell adhesion in various tissues. Here, we identified and characterized a novel adhesion molecule that belongs to the CTX protein family and named as DICAM (Dual Ig domain containing cell adhesion molecule). DICAM is a type I transmembrane protein with two V-type Ig domains in the extracellular region and a short cytoplasmic tail of 442 amino acids. DICAM is found to be expressed ubiquitously in various organs and cell lines. Subcellular localization of DICAM was observed in the cell-cell contact region and nucleus of cultured epithelial cells. Cell-cell contact region was colocalized with tight junction protein, ZO-1. The DICAM increased MDCK cell adhesion to 60% levels of fibronectin. DICAM mediated cell adhesion was specific for the alphavbeta3 integrin; other integrins, alpha2, alpha5, beta1, alpha2beta1, alpha5beta1, were not involved in cell adhesion. In identifying the interacting domain of DICAM with alphavbeta3, the Ig domain 2 showed higher cell adhesion activity than that of Ig domain 1. Although RGD motif in Ig domain 2 was engaged in cell adhesion, it was not participated in DICAM-alphavbeta3 mediated cell adhesion. Furthermore, differentially expressing DICAM stable cells showed well correlated cell to cell adhesion capability with integrin beta3-overexpressing cells. Collectively, these results indicate that DICAM, a novel dual Ig domain containing adhesion molecule, mediates cell adhesion via alphavbeta3 integrin.  相似文献   

4.
Endothelial sequestration of circulating monocytes is a key event in early atherosclerosis. Hemodynamics is proposed to regulate monocyte-endothelial cell interactions by direct cell activation and establishment of flow environments that are conducive or prohibitive to cell-cell interaction. We investigated fluid shear regulation of monocyte-endothelial cell adhesion in vitro using a disturbed laminar shear system that models in vivo hemodynamics characteristic of lesion-prone vascular regions. Human endothelial cell monolayers were flow conditioned for 6 h before evaluation of monocyte adhesion under static and dynamic flow conditions. Results revealed a distinctive clustered cell pattern of monocyte adhesion that strongly resembles in vivo leukocyte adhesion in early- and late-stage atherosclerosis. Clustered monocyte cell adhesion correlated with endothelial cells coexpressing intercellular adhesion molecule-1 (ICAM-1) and E-selectin as result of a flow-induced, selective upregulation of E-selectin expression in a subset of ICAM-1-expressing cells. Clustered monocyte cell adhesion assayed under static conditions exhibited a spatial variation in size and frequency of occurrence, which demonstrates differential regulation of endothelial cell adhesiveness by the local flow environment. Dynamic adhesion studies conducted with circulating monocytes resulted in clustered cell adhesion only within the disturbed flow region, where the monocyte rate of motion is sufficiently low for cell-cell interaction. These studies provide evidence and reveal mechanisms of local hemodynamic regulation of endothelial adhesiveness and endothelial monocyte interaction that lead to localized monocyte adhesion and potentially contribute to the focal origin of arterial diseases such as atherosclerosis.  相似文献   

5.
Galectin-8 functions as a matricellular modulator of cell adhesion   总被引:10,自引:0,他引:10  
The interaction of cells with the extracellular matrix regulates cell adhesion and motility. Here we demonstrate that different cell types adhere and spread when cultured in serum-free medium on immobilized galectin-8, a mammalian beta-galactoside-binding protein. At maximal doses, galectin-8 is equipotent to fibronectin in promoting cell adhesion and spreading. Cell adhesion to immobilized galectin-8 is mediated by sugar-protein interactions with integrins, and galectin-8 triggers integrin-mediated signaling cascades including Tyr phosphorylation of focal adhesion kinase and paxillin. Cell adhesion is potentiated in the presence of Mn(2+), whereas it is interrupted in the presence of soluble galectin-8, integrin beta(1) inhibitory antibodies, EDTA, or thiodigalactoside but not by RGD peptides. Furthermore, cells readily adhere onto immobilized monoclonal galectin-8 antibodies, which are equipotent to integrin antibodies in promoting cell adhesion. Cell adhesion to immobilized galectin-8 is partially inhibited by serum proteins, suggesting that complex formation between immobilized galectin-8 and serum components generates a matrix that is less supportive of cell adhesion. Accordingly, cell motility on immobilized galectin-8 readily takes place in the presence of serum. Truncation of the C-terminal half of galectin-8, including one of its two carbohydrate recognition domains, largely abolishes its ability to modulate cell adhesion, indicating that both carbohydrate recognition domains are required to maintain a functional form of galectin-8. Collectively, our findings implicate galectin-8 as a physiological modulator of cell adhesion. When immobilized, it functions as a matrix protein equipotent to fibronectin in promoting cell adhesion by ligation and clustering of cell surface integrin receptors. In contrast, when present in excess as a soluble ligand, galectin-8 (like fibronectin) forms a complex with integrins that negatively regulates cell adhesion. Because of its dual effects on the adhesive properties of the cells and its association with fibronectin, galectin-8 might be considered a novel type of matricellular protein.  相似文献   

6.
Transglutaminases (TGases) are enzymes which catalyze cross-link formation between glutamine residues and lysine residues in substrate proteins. We have previously reported that one of the TGases, blood coagulation factor XIIIa (FXIIIa), is capable of mediating adhesion of various cells. In this paper, we report for the first time that tissue-type transglutaminase (TGc) also has cell adhesion activity. TGc-coated plastic surface promoted adhesion and spreading of cells in a TGc concentration-dependent manner. However, there are some obvious differences between cell adhesion mediated by TGc and FXIIIa. As was reported previously, the adhesion to FXIIIa is dependent on its TGase activity. In contrast, the TGc-mediated cell adhesion is independent of its TGase activity: 1) The modification of the active center cysteine with iodoacetamide blocked the enzyme activity without any effect on cell adhesion; 2) the addition of Mg2+ did not induce the enzyme activity, but it was as effective as Ca2+ for cell adhesion; 3) the addition of NH4+ inhibited the enzyme activity but did not affect the cell adhesion significantly. The integrins involved in these cell adhesions are quite different. In the case of FXIIIa, alpha vbeta3 and alpha5beta1 integrins are involved and consequently the RGD peptide substantially inhibited the adhesion. On the other hand, the cell adhesion to TGc is mediated by alpha4beta1 integrin but not alpha5beta1; a CS-1 peptide, which represents the binding site of fibronectin to alpha4beta1 integrin, completely inhibited the cell adhesion to TGc. It is possible that TGc and FXIIIa may mediate cell adhesion under different physiological and pathological situations.  相似文献   

7.
This article describes various adhesion molecules and reviews evidence to support a mechanistic role for adhesion molecules in the process of cancer metastasis. A variety of evidence supports the involvement of specific adhesion molecules in metastasis.
  1. For example, some cancer cells metastasize to specific organs, irrespective of the first organ encountered by the circulating cancer cells. This ability to colonize a specific organ has been correlated with the preferential adhesion of the cancer cells to endothelial cells derived from the target organ. This suggests that cancer cell/endothelial cell adhesion is involved in cancer cell metastasis and that adhesion molecules are expressed on the endothelium in an organ-specific manner.
  2. Further, inclusion of peptides that inhibit cell adhesion, such as the YIGSR- or RGD-containing peptides, is capable of inhibiting experimental metastasis.
  3. Metastasis can be enhanced by acute or chronic inflammation of target vessels, or by treatment of animals with inflammatory cytokines, such as interleukin-1. In vitro, cancer cell/endothelial cell adhesion can be enhanced by pretreating the endothelial cell monolayer with cytokines, such as interleukin-1 or tumor necrosis factor-α. This suggests that, in addition to organ-specific adhesion molecules, a population of inducible endothelial adhesion molecules is involved and is relevant to metastasis.
  4. Further support for this model is found in the comparison to leukocyte/endothelial adhesion during leukocyte trafficking. Convincing evidence exists, both in vivo and in vitro, to demonstrate an absolute requirement for leukocyte/endothelial adhesion before leukocyte extravasation can occur. The relevance of this comparison to metastasis is reinforced by the observation that some of the adhesion molecules involved in leukocyte/endothelial adhesion are also implicated in cancer cell/endothelial adhesion. The involvement of adhesion molecules suggests a potential therapy for metastasis based on interrupting adhesive interactions that would augment other treatments for primary tumors.
  相似文献   

8.
Cell adhesion to a scaffold is a prerequisite for tissue engineering. Many studies have been focused on enhancing cell adhesion to synthetic materials that are used for scaffold fabrication. Previously, we showed that immobilization of biotin molecules to chondrocyte surfaces enhanced cell adhesion to avidin-coated biodegradable polymers such as poly-L-lactic acid, poly-D,L-lactic acid and polycaprolactone. However, the endocytosis of cell membrane biotin molecules decreases binding strength between biotinylated-chondrocytes (B-chondrocytes) and avidin-coated substrata, and therefore decreases cell spreading and discourages long-term chondrocytes culture. In this study, we proposed two strategies to solve the shortcoming of the avidin-biotin binding system. First, the avidin-biotin binding system is combined with the intrinsic integrin-dependent adhesion systems in order to enhance long-term cell culture. Second, the incubation temperature is lowered in order to slow down the endocytosis process. We found that the avidin-biotin binding system in combination with FN-integrin binding system enhanced cell adhesion, cell spreading and cell growth. Decrease of cell culture temperature to 4 degrees C enhanced the adhesion of B-chondrocytes to the avidin-coated surfaces, but decreased cell viability and proliferation, compared to culture temperature of 37 degrees C. Whether there is an optimal seeding temperature between 4 and 37 degrees C for both adhesion and proliferation of B-chondrocytes needs further investigation. Our results indicated that modulation of the adhesion conditions could further enhance the efficacy of the avidin-biotin binding system in mediating cell adhesion, and subsequent tissue culture.  相似文献   

9.
Trask is a recently described transmembrane substrate of Src kinases whose expression and phosphorylation has been correlated with the biology of some cancers. Little is known about the molecular functions of Trask, although its phosphorylation has been associated with cell adhesion. We have studied the effects of Trask phosphorylation on cell adhesion, integrin activation, clustering, and focal adhesion signaling. The small hairpin RNA (shRNA) knockdown of Trask results in increased cell adhesiveness and a failure to properly inactivate focal adhesion signaling, even in the unanchored state. On the contrary, the experimentally induced phosphorylation of Trask results in the inhibition of cell adhesion and inhibition of focal adhesion signaling. This is mediated through the inhibition of integrin clustering without affecting integrin affinity state or ligand binding activity. Furthermore, Trask signaling and focal adhesion signaling inactivate each other and signal in exclusion with each other, constituting a switch that underlies cell anchorage state. These data provide considerable insight into how Trask functions to regulate cell adhesion and reveal a novel pathway through which Src kinases can oppose integrin-mediated cell adhesion.  相似文献   

10.
Traditionally, cell adhesion assays are performed in a manual workstation format using fluorescence-based readouts. Herein, the authors describe a label-free homogeneous assay to identify inhibitors of α4β7 integrin-mediated cell adhesion to its ligand, the mucosal addressin cell adhesion molecule (MadCAM), using the SRU BIND platform. The biosensor is optically based and comprises a subwavelength polymer grating. The assay was validated using standard compounds and an α4 blocking antibody and correlated very closely with the manual assay format when running a battery of test compounds of varying potencies. Cell adhesion was strictly dependent on the presence of divalent cations where Mg(2+) was greater than Ca(2+) at promoting cell adhesion. This homogeneous and label-free format exhibited low variability with a calculated Z' of 0.6. In addition to measuring α4β7-mediated 8866 cell adhesion to MadCAM, the authors also demonstrate that this platform can measure adhesion of Jurkat cells expressing α4β1 to the vascular cell adhesion molecule. Thus, the SRU BIND platform is widely applicable to measuring cell adhesion events mediated by other integrins binding to their receptors in an assay format that is amenable to high-throughput screening.  相似文献   

11.
12.
Late passage fibroblasts show decreased cell-substrate adhesion. We provide evidence that the reduced adhesion is due to a defect in the adhesive glycoprotein fibronectin. Late passage cells become more adhesive in culture media that has been conditioned by the growth of early passage cells. Analysis of fibronectins purified from early and late passage cell conditioned media indicates that there are striking differences in their abilities to promote cell adhesion. Young cell fibronectin supports the maximal adhesion of both young and old cells. However, old cells require quantitatively more fibronectin. In contrast, old cell fibronectin is less effective in supporting the adhesion of either cell type. In addition, neither cell type achieves a normal morphology in the presence of old cell fibronectin. The results support the conclusion that the fibronectin released by late passage cells is defective and does not support normal cell-substrate interactions.  相似文献   

13.
Cellular interaction with and adhesion on different biological surfaces is a dynamic and integrated process requiring the participation of specialized cell surface receptors, structural proteins, signaling proteins, and the cellular cytoskeleton. In this report, the authors describe a label-free and real-time method for measuring and monitoring cell adhesion on special microplates integrated with electronic cell sensor arrays. These plates were used in conjunction with the real-time cell electronic sensing (RT-CES) system to dynamically and quantitatively monitor the specific interaction of fibroblasts with extracellular matrix (ECM) proteins and compared with standard adhesion techniques. Cell adhesion on ECM-coated cell sensor arrays is dependent on the concentration of ECM proteins coated and is inhibited by agents that disrupt the interaction of ECM with cell surface receptors. Furthermore, the authors demonstrate that the integrity of the actin cytoskeleton is required for productive cell adhesion and spreading on ECM-coated microelectronic sensors. Confirming earlier results, it is shown that interfering with Src expression or activity, via siRNA or small molecule, results in the disruption of adhesion and spreading of Bx PC3 cells. The results indicate that the RT-CES system offers a convenient and quantitative means of assessing the kinetics of cell adhesion in a high-throughput manner.  相似文献   

14.
NELL1 is a large oligomeric secretory glycoprotein that functions as an osteoinductive factor. NELL1 contains several conserved domains, has structural similarities to thrombospondin 1, and supports osteoblastic cell adhesion through integrins. To define the structural requirements for NELL1-mediated cell adhesion, we prepared a series of recombinant NELL1 proteins (intact, deleted, and cysteine-mutant) from a mammalian expression system and tested their activities. A deletion analysis demonstrated that the C-terminal cysteine-rich region of NELL1 is critical for the cell adhesion activity of NELL1. Reducing agent treatment decreased the cell adhesion activity of full-length NELL1 but not of its C-terminal fragments, suggesting that the intramolecular disulfide bonds within this region are not functionally necessary but that other disulfide linkages in the N-terminal region of NELL1 may be involved in cell adhesion activity. By replacing cysteine residues with serines around the coiled-coil domain of NELL1, which is responsible for oligomerization, we created a mutant NELL1 protein that was unable to form homo-oligomers, and this monomeric mutant showed substantially lower cell adhesion activity than intact NELL1. These results suggest that an oligomerization-induced conformational change in the C-terminal region of NELL1 is important for the efficient mediation of cell adhesion and spreading by NELL1.  相似文献   

15.
The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidyl inositol-anchored protein that mediates cell adhesion to the extracellular matrix protein vitronectin (VN). We demonstrate here that this cell adhesion process is accompanied by the formation of an adhesion patch characterized by an accumulation of uPAR into areas of direct contact between the cell and the matrix. The adhesion patch requires the glycolipid anchor and develops only on a VN-coated substrate, but not on fibronectin. It consists of detergent-insoluble microdomains that accumulate F-actin and tyrosine-phosphorylated proteins, but not β1 integrins. Lack of inhibition of adhesion in the presence of integrin-blocking reagents and adhesion on a VN fragment without the RGD sequence indicated that the adhesion of uPAR-bearing cells on VN could occur independently of integrins. Hence, uPAR-mediated cell adhesion on VN relies on the formation of a unique cellular structure that we have termed “detergent-insoluble adhesion patch” (DIAP).  相似文献   

16.
Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell–matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell–vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvβ5, and that active PAK4 induces accelerated integrin αvβ5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvβ5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.  相似文献   

17.
Macrophage stimulating protein (MSP) is a growth and motility factor that mediates its activity via the RON/STK receptor tyrosine kinase. MSP promotes integrin-dependent epithelial cell migration, which suggests that MSP may regulate integrin receptor functions. Integrins are cell surface receptors for extracellular matrix. Epithelial cell adhesion and motility are mediated by integrins. We studied the enhancement by MSP of cell adhesion and the molecular mechanisms mediating this effect. MSP decreased the time required for adhesion of 293 and RE7 epithelial cells to substrates coated with collagen or fibronectin. Prevention of adhesion by an RGD-containing peptide showed that the cell-substrate interaction was mediated by integrins. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), blocked MSP-dependent adhesion, which shows that PI3-K is in the MSP-induced adhesion pathway. MSP also affected focal adhesion kinase (FAK) which is important for some types of cell adhesion and motility. Although MSP caused PI3-K-independent tyrosine phosphorylation and activation of FAK, experiments with dominant-negative FAK constructs showed that FAK does not mediate the effects of MSP on cell adhesion or motility. Thus PI3-K, but not FAK, mediates MSP-induced integrin-dependent adhesion of epithelial cells. Also, we found ligand-independent association between RON and beta1 integrin, which is additional evidence for a relationship between these two receptor systems.  相似文献   

18.
The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK).  相似文献   

19.
Integrin-associated focal adhesion complexes provide the main adhesive links between the cellular actin cytoskeleton and the surrounding extracellular matrix. In vitro, cells utilize a complex temporal and spatially regulated mechanism of focal adhesion assembly and disassembly required for cell migration. Recent studies indicate that members of both calpain and caspase protease families can promote limited proteolytic cleavage of several components of focal adhesions leading to disassembly of these complexes. Such mechanisms that influence cell adhesion may be deregulated under pathological conditions characterized by increased cell motility, such as tumor invasion. v-Src-induced oncogenic transformation is associated with loss of focal adhesion structures and transition to a less adherent, more motile phenotype, while inactivating temperature-sensitive v-Src in serum-deprived transformed cells leads to detachment and apoptosis. In this report, we demonstrate that v-Src-induced disassembly of focal adhesions is accompanied by calpain-dependent proteolysis of focal adhesion kinase. Furthermore, inhibitors of calpain repress v-Src-induced focal adhesion disruption, loss of substrate adhesion, and cell migration. In contrast, focal adhesion loss during detachment and apoptosis induced after switching off temperature-sensitive v-Src in serum-deprived transformed cells is accompanied by caspase-mediated proteolysis of focal adhesion kinase. Thus, calpain and caspase differentially regulate focal adhesion turnover during Src-regulated cell transformation, motility, and apoptosis.  相似文献   

20.
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号