首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In Chinese hamster ovary (CHO) cells expressing the cloned guinea-pig Y1 receptor, the saturable, receptor-linked internalization of NPY (NPY)-related peptides showed the rank order of human/rat neuropeptide Y (hNPY)>pig/rat peptide YY (pPYY)>=(Pro(34))human PYY>(Leu(31),Pro(34))hNPY>(Leu(31),Pro(34))hPYY>BVD-11 (a selective Y1 antagonist). All agonists accessed similar numbers of Y1 sites in particulates from disrupted cells, with relatively small affinity variation. The rate of internalization could significantly depend on the overall interactivity of the agonist peptide (reflected in sensitivity to chaotropic agents, as well as in the level of non-saturable binding and internalization). Concentration-dependent inhibition of the agonist-driven CHO-Y1 internalization was found with filipin III (a cholesterol-complexing macrolide), and confirmed with inhibitors of clathrin lattice formation, phenylarsine oxide (PAO) and sucrose. In the concentration range affecting Y1 internalization, none of the above treatments or agents significantly alter agonist affinity for Y1 cell surface or particulate receptors. Largely similar responses to the above inhibitors were observed in CHO-Y1 cells for internalization of human transferrin. Internalization of CHO-Y1 receptor apparently is driven by NPY in strong preference to other naturally encountered agonists. At 37 degrees C, most of the internalized receptor is rapidly recycled through endosome-like membrane elements, detectable in Percoll gradients.  相似文献   

2.
Guinea-pig neuropeptide Y1 and rat pancreatic polypeptide Y4 receptors expressed in Chinese hamster ovary cells were internalized rapidly upon attachment of selective peptide agonists. The Y1 and Y2, but not the Y4, receptor also internalized the nonselective neuropeptide Y receptor agonist, human/rat neuropeptide Y. The internalization of guinea-pig neuropeptide Y2 receptor expressed in Chinese hamster ovary cells was small at 37 degrees C, and essentially absent at or below 15 degrees C, possibly in connection to the large molecular size of the receptor-ligand complexes (up to 400 kDa for the internalized fraction). The rate of intake was strongly temperature dependent, with essentially no internalization at 6 degrees C for any receptor. Internalized receptors were largely associated with light, endosome-like particulates. Sucrose dose-dependently decreased the internalization rate for all receptors, while affecting ligand attachment to cell membrane sites much less. Internalization of the Y1 and the Y4 receptors could be blocked, and that of the Y2 receptor significantly inhibited, by phenylarsine oxide, which also unmasked spare cell-surface receptors especially abundant for the Y2 subtype. The restoration of Y1 and Y4 receptors after agonist peptide pretreatment was decreased significantly by cycloheximide and monensin. Thus, in Chinese hamster ovary cells the Y1 and Y4 receptors have much larger subcellular dynamics than the Y2 receptor. This differential could also hold in organismic systems, and is comparable with the known differences in internalization of angiotensin, bradykinin, somatostatin and opioid receptor subtypes.  相似文献   

3.
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.  相似文献   

4.
Ma Y  Yang M  Gao H  Niu G  Yan Y  Lang L  Kiesewetter DO  Chen X 《Amino acids》2012,43(4):1625-1632
An LC/MS method was used to evaluate 2-fluoropropionyl (FP) and 4-fluorobenzoyl (FB) modified bombsin peptides: GRPR agonist [Aca-QWAVGHLM-NH(2)] and antagonist [fQWAVGHL-NHEt], and their hydrophilic linker modified counterparts with the attachment of GGGRDN sequence. This study developed strategies to evaluate the in vitro receptor mediated cell uptake and metabolic profile of the various GRPR agonists and antagonists. We identified the metabolites produced by rat hepatocytes and quantitatively analyzed the uptake and internalization of the ligands in PC-3 human prostate cancer cells. The major metabolites of both GRPR agonists and antagonists were the result of peptide bond hydrolysis between WA and AV. The agonists also formed a unique metabolite resulting from hydrolysis of the C-terminal amide. The antagonists showed significantly higher stability against metabolism compared to the agonists in rat hepatocytes. The directly modified agonists (FP-BBN and FB-BBN) had higher internalization with similar cell binding compared to the unmodified agonist (BBN), whereas the hydrophilic linker modified agonists (G-BBN and FG-BBN) had much lower total cell uptake. The labeled antagonists (FP-NBBN, FB-NBBN, G-NBBN and FP-G-NBBN) displayed lower internalization. The optimal imaging agent will depend on the interplay of ligand metabolism, cellular uptake, and internalization in vivo.  相似文献   

5.
In previous studies, mutant clones (designated Y1DR) were isolated that resisted ACTH-induced homologous desensitization of adenylyl cyclase. The Y1DR mutation also conferred resistance to the homologous desensitization induced by agonist stimulation of transfected beta 2-adrenergic receptors. These observations suggested that ACTH and beta 2-adrenergic agonists homologously desensitized adenylyl cyclase in Y1 cells by a common mechanism. In the present study, parental Y1 cells (Y1DS) and the Y1DR mutant were transfected with the gene encoding the human dopamine D1 receptor and examined for regulation of adenylyl cyclase by dopaminergic agonists. Transformants were isolated from both cell lines and shown to respond to dopamine agonists with increases in adenylyl cyclase activity. Treatment of the Y1DS transformants with ACTH promoted a rapid, homologous desensitization of adenylyl cyclase and had little effect on the responses to dopamine or NaF; treatment of Y1DS with dopaminergic agonists promoted a slower rate of heterologous desensitization that diminished responsiveness of the adenylyl cyclase system to dopamine, ACTH, and NaF. Y1DR cells transfected with the dopamine D1 receptor were resistant to the heterologous desensitization of adenylyl cyclase induced by dopaminergic agonists. These latter observations suggest that the pathways of homologous desensitization and heterologous desensitization converge at a common point in the desensitization pathway defined by the DR mutation in Y1 cells.  相似文献   

6.
Agonist stimulation readily internalizes neuropeptide Y receptor Y1 while there are contradictory results for the Y2 receptor. In order to explore putative functional differences between the Y1 and Y2 receptors we generated reciprocal chimeras by swapping the third intracellular loop, the carboxy terminus or both between human Y1 and Y2. Internalization was studied in a quantitative radioligand binding assay with removal of surface-bound ligand in an acidic-wash procedure. The internalization assay revealed a lower degree of internalization as well as slower kinetics for the Y2 receptor. Generally, reciprocal exchange of receptor segments did not convey properties of the donor receptor but tended to enhance internalization. Surprisingly, insertion of the Y2 carboxy terminus into Y1 gave almost complete internalization (92%), rather than reduced internalization, while the insertion of both segments resulted in internalization equal to the native Y1 receptor. These findings were confirmed by fluorescence microscopy of immuno-stained receptors tagged with a C-terminal FLAG epitope. However, after exposure to high agonist concentrations (100 nM) Y2 was internalized. Studies of Y2 and the closely related Y7 receptor confirmed low internalization for Y2 from chicken and teleost fishes as well as Y7 from two teleosts. The conservation across species of low internalization at physiological concentrations suggests that this is an ancient feature and of vital importance for Y2 function. We propose that amino acid motifs in the third intracellular loop as well as the C terminus of both Y1 and Y2 are able to drive agonist-promoted internalization and that there may be constraining motifs in the Y2 receptor.  相似文献   

7.
本文旨在探讨N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体与神经肽Y(neuropeptide Y,NPY)在慢性应激抑郁发生中的作用与关系。建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,海马单侧分别微量注射非竞争性NMDA受体拮抗剂MK-801、NPY-Y1受体阻断剂GR231118和NMDA后,利用体重测量及糖水偏爱测试、强迫游泳及敞箱实验等方法观察动物行为变化,运用免疫组织化学方法检测海马CA3区和齿状回(dentate gyrus,DG)内NPY的表达。结果显示,CUMS组大鼠表现出抑郁样行为变化,海马NPY表达显著降低;海马微量注射NMDA或NPY-Y1受体阻断剂GR231118,动物行为学表现均与CUMS组相同,注射NMDA可使NPY表达显著降低;海马微量注射MK-801能明显改善应激引起的抑郁样行为表现,并使海马NPY表达增加。联合注射GR231118与MK-801后,GR231118可以显著减弱MK-801的抗抑郁样行为的效应。以上结果表明,CUMS可能使谷氨酸(glutamic acid,Glu)过量释放,NMDA受体过度激活,抑制NPY表达,导致抑郁发生。NPY抗抑郁作用主要是通过NPY-Y1受体实现。  相似文献   

8.
We previously demonstrated that phosphorylation of somatostatin receptor 2A (sst2A) is rapidly increased in transfected cells both by agonist and by the protein kinase C (PKC) activator phorbol myristate acetate (PMA). Here, we investigate whether PKC-mediated receptor phosphorylation is involved in the homologous or heterologous regulation of endogenous sst2 receptors in AR42J pancreatic acinar cells upon stimulation by agonist or by cholecystokinin (CCK) or bombesin (BBS). Somatostatin, PMA, CCK, and BBS all increased sst2A receptor phosphorylation 5- to 10-fold within minutes. Somatostatin binding also caused rapid internalization of the ligand-receptor complex, and PMA, CCK, and BBS all stimulated this internalization further. Additionally, sst2 receptor-mediated inhibition of adenylyl cyclase was desensitized by all treatments. Somatostatin, as well as peptidic (SMS201-995) and nonpeptidic (L-779,976) sst2 receptor agonists increased the EC(50) for somatostatin inhibition 20-fold. In contrast, pretreatment with BBS, CCK, or PMA caused a modest 2-fold increase in the EC(50) for cyclase inhibition. Whereas the PKC inhibitor GF109203X abolished sst2A receptor phosphorylation by CCK, BBS, and PMA, it did not alter the effect of somatostatin, demonstrating that these reactions were catalyzed by different kinases. Consistent with a functional role for PKC-mediated receptor phosphorylation, GF109203X prevented PMA stimulation of sst2 receptor internalization. Surprisingly, however, GF109203X did not inhibit BBS and CCK stimulation of sst2A receptor endocytosis. These results demonstrate that homologous and heterologous hormones induce sst2A receptor phosphorylation by PKC-independent and -dependent mechanisms, respectively, and produce distinct effects on receptor signaling and internalization. In addition, the heterologous hormones also modulate sst2 receptor internalization by a novel mechanism that is independent of receptor phosphorylation.  相似文献   

9.
The neuropeptide Y-family receptor Y4 differs extensively between human and rat in sequence, receptor binding, and anatomical distribution. We have investigated the differences in binding profile between the cloned human, rat, and guinea pig Y4 receptors using NPY analogues with single amino acid replacements or deletion of the central portion. The most striking result was the increase in affinity for the rat receptor, but not for human or guinea pig, when amino acid 34 was replaced with proline; [Ahx(8-20),Pro(34)]NPY bound to the rat Y4 receptor with 20-fold higher affinity than [Ahx(8-20)]NPY. Also, the rat Y4 tolerates alanine in position 34 since p[Ala(34)]NPY bound with similar affinity as pNPY while the affinity for hY4 and gpY4 decreased about 50-fold. Alanine substitutions in position 33, 35, and 36 as well as the large loop-deletion, [Ahx(5-24)]NPY, reduced the binding affinity to all three receptors more than 100-fold. NPY and PYY competed with (125)I-hPP at Y4 receptors expressed in CHO cells according to a two-site model. This was investigated for gpY4 by saturation with either radiolabeled hPP or pPYY. The number of high-affinity binding-sites for (125)I-pPYY was about 60% of the receptors recognized by (125)I-hPP. Porcine [Ala(34)]NPY and [Ahx(8-20)]NPY bound to rY4 (but not to hY4 or gpY4) according to a two-site model. These results suggest that different full agonists can distinguish between different active conformations of the gpY4 receptor and that Y4 may display functional differences in vivo between human, guinea pig, and rat.  相似文献   

10.
Internalization and downregulation are important steps in the modulation of receptor function. Recent work with the beta2 adrenergic and opioid receptors have implicated these processes in receptor-mediated activation of mitogen-activated protein kinase (MAPK). We have used CHO cells expressing epitope-tagged rat kappa opioid receptors (rKORs) and prodynorphin-derived peptides to characterize the agonist-mediated endocytosis of rKORs and activation of MAPK. Kappa receptor-selective peptides induced receptor internalization and downregulation whereas nonpeptide agonists did not. An examination of the ability of dynorphin A-17-related peptides (lacking C-terminal amino acids) to promote KOR internalization, inhibition of adenylyl cyclase, and MAPK phosphorylation revealed that the N-terminal seven residues play an important role in eliciting these responses. Both dynorphin peptides and nonpeptide agonists induced rapid and robust phosphorylation of MAPKs. Taken together, these results point to a difference in the ability of dynorphin peptides and nonpeptide ligands to promote rKOR endocytosis and support the view that rKOR internalization is not required for MAPK activation.  相似文献   

11.
FMRFamide and related peptides (RFamides) were found to inhibit the association binding of iodinated human pancreatic polypeptide ([125I]hPP) to Y5-like neuropeptide Y (NPY) receptor in rodent tissues. An allosteric regulation of the activity of the rodent kidney PP-sensitive neuropeptide Y (NPY) receptor by RFamides was indicated by potency decrease with particle concentration in the inhibition of the association binding of 125I-labeled human pancreatic polypeptide (hPP) by RFamides at rabbit kidney membranes. The competition by C-terminal hexapeptide of hPP (LTRPRY.NH2) did not show such affinity change. The steady-state binding of hPP showed little sensitivity to any of the RFamides tested. The Y1-selective binding of [125I][Leu31,Pro34]hPYY (at 2 nM hPP) was much less sensitive to RFamides than the binding of [125I]hPP, albeit with some differences across tissue or cell types. The binding of Y2-selective agonist 125I-labeled human peptide YY (3-36) was quite insensitive to RFamides. The presence of a unique component in the inhibition of hPP binding by RFamides was further indicated by a degree of antagonism with phospholipase C inhibitor U-73122, and by an only limited cooperation with a N5-amiloride compound, and with alkylator chloroethylclonidine. Change of the chirality of individual residues in the FMRFamide molecule produced a significant reduction of inhibitory potency only with D-Phe in the C-terminal position. Substitution of the (C-3) L-Met by L-Leu greatly increased the inhibitory potency of RFamides relative to otherwise identical congeners. RFamides could act both as ligands of membrane neighbors of the PP receptor, and as competitors of Y5-like NPY receptor epitopes that accommodate the C-terminal aspects of agonist peptides.  相似文献   

12.
The receptor-linked internalization of [125I] human neuropeptide Y (NPY) in Chinese hamster ovary (CHO) cells expressing the guinea-pig Y1 receptors or in human endometrial carcinoma-1B (Hec-1B) cells expressing the human Y5 receptor, as well as the receptor-linked internalization of human pancreatic polypeptide (hPP) receptor expressed in CHO cells, is selectively inhibited by low molarities of the Li+ cation. The Na+ and K+ cations decreased the receptor-linked internalization of agonist peptides only at high molar inputs, and largely in proportion to the reduction of cell surface binding of Y ligand peptides, dependent on ion concentration and the type of Y receptor examined. With particulates isolated from disrupted cells, there was no preferential inhibition by Li+ relative to Na+ in the binding of type-specific ligand peptides to Y receptors of any type. The observed difference could be connected to the known ability of Li+ to modify active conformations of signal transducers, which may also directly or indirectly affect the internalization motors. The decrease in the rate of Y receptor internalization by Li+ also points to a possible alteration of Y receptor signaling in vivo by lithium at acute therapeutically employed dose levels.  相似文献   

13.
The cannabinoid receptor 1 (CB1), a member of the class A G protein-coupled receptor family, is expressed in brain tissue where agonist stimulation primarily activates the pertussis toxin-sensitive inhibitory G protein (G(i)). Ligands such as CP55940 ((1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3- hydroxypropyl)cyclohexan-1-ol) and Δ(9)-tetrahydrocannabinol are orthosteric agonists for the receptor, bind the conventional binding pocket, and trigger G(i)-mediated effects including inhibition of adenylate cyclase. ORG27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide) has been identified as an allosteric modulator that displays positive cooperativity for CP55940 binding to CB1 yet acts as an antagonist of G protein coupling. To examine this apparent conundrum, we used the wild-type CB1 and two mutants, T210A and T210I (D'Antona, A. M., Ahn, K. H., and Kendall, D. A. (2006) Biochemistry 45, 5606-5617), which collectively cover a spectrum of receptor states from inactive to partially active to more fully constitutively active. Using these receptors, we demonstrated that ORG27569 induces a CB1 receptor state that is characterized by enhanced agonist affinity and decreased inverse agonist affinity consistent with an active conformation. Also consistent with this conformation, the impact of ORG27569 binding was most dramatic on the inactive T210A receptor and less pronounced on the already active T210I receptor. Although ORG27569 antagonized CP55940-induced guanosine 5'-3-O-(thio)triphosphate binding, which is indicative of G protein coupling inhibition in a concentration-dependent manner, the ORG27569-induced conformational change of the CB1 receptor led to cellular internalization and downstream activation of ERK signaling, providing the first case of allosteric ligand-biased signaling via CB1. ORG27569-induced ERK phosphorylation persisted even after pertussis toxin treatment to abrogate G(i) and occurs in HEK293 and neuronal cells.  相似文献   

14.
The P2Y receptor family is activated by extracellular nucleotides such as ATP and UTP. P2Y receptors regulate physiological functions in numerous cell types. In lung, the P2Y2 receptor subtype plays a role in controlling Cl- and fluid transport. Besides ATP or UTP, also diadenosine tetraphosphate (Ap4A), a stable nucleotide, seems to be of physiological importance. In membrane preparations from human and rat lung we applied several diadenosine polyphosphates to investigate whether they act as agonists for G protein-coupled receptors. We assessed this by determining the stimulation of [35S]GTPgammaS binding. Stimulation of [35S]GTPgammaS binding to G proteins has already been successfully applied to elucidate agonist binding to various G protein-coupled receptors. Ap(n)A (n = 2 to 6) enhanced [35S]GTPgammaS binding similarly in human and rat lung membranes, an indication of the existence of G protein-coupled receptor binding sites specific for diadenosine polyphosphates. Moreover, in both human and rat lung membranes comparable pharmacological properties were found for a diadenosine polyphosphate ([3H]Ap4A) binding site. The affinity for Ap2A, Ap3A, Ap4A, Ap5A, and Ap6A was also comparable. 8-Diazido-Ap4A and ATP were less potent, whereas the pyrimidine nucleotide UTP showed hardly any affinity. Thus, we present evidence that different diadenosine polyphosphates bind to a common G protein-coupled receptor binding site in membranes derived either from human or rat lung.  相似文献   

15.
Recombinant turkey erythrocyte beta-adrenergic receptors expressed in murine L cells exhibited characteristic avian subtype selectivity for agonists and antagonists. In 10 of the 11 clones studied, no agonist-induced internalization of receptor was observed, although agonist-induced uncoupling of receptor and adenylyl cyclase occurred rapidly. GTP caused little or no decrease in affinity for beta-adrenergic agonists. Such behavior is commonly observed in avian erythrocytes. In contrast, one clone was susceptible to agonist-induced receptor internalization and down-regulation even though it exhibited characteristic avian beta-adrenergic ligand-binding properties. The affinity of this variant receptor for agonists was also notably reduced by GTP. Electrophoresis of affinity-labeled receptor from this clone indicated an apparent size of about 33 kDa, about 12 kDa less than that of the native or recombinant turkey beta-adrenergic receptor. Genomic DNA from this cell line that encodes the receptor was cloned and partially sequenced. The coding region of the original receptor cDNA was interrupted after codon 412 (out of 483) and was followed by 36 base pairs of novel sequence prior to the first in-frame stop codon. These results suggest that the lack of both hormone-induced internalization and GTP-sensitive, high affinity binding of agonists that is characteristic of the beta-adrenergic receptor in avian erythrocytes is due to intrinsic properties of the receptor. The restoration of these phenomena in a C-terminally truncated mutant receptor suggests the importance of the C-terminal domain in determining these processes.  相似文献   

16.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

17.
Abstract: Using a combination of library screening and nested PCR based on a partial human serotonin 5-HT4 receptor sequence, we have cloned the complete coding region for a human 5-HT4 receptor. The sequence shows extensive similarity to the published porcine 5-HT4A and rat 5-HT4L receptor cDNA; however, in comparison with the latter, we find an open reading frame corresponding to only 388 amino acids instead of 406 amino acids. This difference is due to a frame shift caused by an additional cytosine found in the human sequence after position 1,154. Moreover, we also found the same additional cytosine in the rat 5-HT4 sequence. We confirmed the occurrence of the sequence by examining this part of the sequence in genomic DNA of 10 human volunteers and in rat genomic DNA. Based on a part of the genomic 5-HT4 receptor sequence that was identified in the cloning process, there seem to be at least two possible splice sites in the coding region of the gene. The human 5-HT4 receptor, transiently expressed in COS-7 cells, showed radioligand binding properties similar to 5-HT4 receptors in guinea pig striatal tissue. [3H]GR 113808 revealed K D values of 0.15 ± 0.01 n M for the human receptor and 0.3 ± 0.1 n M in the guinea pig tissue. Binding constants were determined for four investigated 5-HT4 antagonists and three agonists, and appropriate binding inhibition constants were found in each case. Stimulation of transfected COS-7 cells with 5-HT4-specific agonists caused an increase in cyclic AMP levels.  相似文献   

18.
Activated human neuropeptide Y Y(1) receptors rapidly desensitize and internalize through clathrin-coated pits and recycle from early and recycling endosomes, unlike Y(2) receptors that neither internalize nor desensitize. To identify motifs implicated in Y(1) receptor desensitization and trafficking, mutants with varying C-terminal truncations or a substituted Y(2) C-terminus were constructed. Point mutations of key putative residues were made in a C-terminal conserved motif [phi-H-(S/T)-(E/D)-V-(S/T)-X-T] that we have identified and in the second intracellular i2 loop. Receptors were analyzed by functional assays, spectrofluorimetric measurements on living cells, flow cytometry, confocal imaging and bioluminescence resonance energy transfer assays for beta-arrestin activation and adaptor protein (AP-2) complex recruitment. Inhibitory GTP-binding protein-dependent signaling of Y(1) receptors to adenylyl cyclase and desensitization was unaffected by C-terminal truncations or mutations, while C-terminal deletion mutants of 42 and 61 amino acids no longer internalized. Substitutions of Thr357, Asp358, Ser360 and Thr362 by Ala in the C-terminus abolished both internalization and beta-arrestin activation but not desensitization. A Pro145 substitution by His in an i2 consensus motif reported to mediate phosphorylation-independent recruitment of beta-arrestins affected neither desensitization, internalization or recycling kinetics of activated Y(1) receptors nor beta-arrestin activation. Interestingly, combining Pro145 substitution by His and C-terminal substitutions significantly attenuates Y(1) desensitization. In the Y(2) receptor, replacement of His155 with Pro at this position in the i2 loop motif promotes agonist-mediated desensitization, beta-arrestin activation, internalization and recycling. Overall, our results indicate that beta-arrestin-mediated desensitization and internalization of Y(1) and Y(2) receptors are differentially regulated by the C-terminal motif and the i2 loop consensus motif.  相似文献   

19.
Agonist stimulation of G-protein coupled receptors (GPCRs) results in the redistribution of the receptor from the cell surface into intracellular compartments through the process of endocytosis. Monitoring ligand-mediated internalization of GPCRs in living cells has become experimentally accessible by applying fluorescent reagents and fluorescence microscopy. By using cell lines that transiently, stably or endogenously express the human Y receptor (hYR) subtypes hY(1)R, hY(2)R, hY(4)R and hY(5)R and differently fluorescently tagged receptor proteins we were able to unravel further details concerning the internalization behavior of this multi-receptor/multi-ligand system. For the first time we could show that also the hY(2)R is internalized with a rate which is comparable to the hY(1)R and the hY(4)R. In contrast, the hY(5)R was internalized much slower and the rate remained unaffected by co-expression with other hYR subtypes. Furthermore receptor subtype co-expressing cells and selectively binding peptides revealed a receptor subtype selective internalization. By using novel hY(5)/hY(2) receptor chimera the receptor subtype dependent differences in hY receptor internalization could be identified on a molecular level.  相似文献   

20.
Chen LE  Gao C  Chen J  Xu XJ  Zhou DH  Chi ZQ 《Life sciences》2003,73(1):115-128
Internalization and recycling of G protein-coupled receptors (GPCRs), such as the mu-opioid receptor, largely depend on agonist stimulation. Agonist-promoted internalization of some GPCRs has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether different mu opioid agonists displayed different effects in receptor internalization and recycling, the potential mechanisms involved in ohmefentanyl-induced internalization process. In transfected Sf9 insect cells expressing 6His-tagged wild type mu opioid receptor, exposure to 100 nM ohmefentanyl caused a maximum internalization of the receptor at 30 min and receptors seemed to reappear at the cell membrane after 60 min as determined by radioligand binding assay. Ohmefentanyl-induced human mu opioid receptor internalization was concentration-dependent, with about 40% of the receptors internalized following a 30-min exposure to 1 microM ohmefentanyl. 10 microM morphine and 1 microM DAMGO could also induce about 40% internalization. The antagonist naloxone and pretreatment with pertussis toxin both blocked ohmefentanyl-induced internalization without affecting internalization themselves. Incubation with sucrose 0.45 M significantly inhibited ohmefentanyl-induced internalization of the mu receptor. The removal of agonists ohmefentanyl and morphine resulted in the receptors gradually returning to the cell surface over a 60 min period, while the removal of agonist DAMGO only partly resulted in the receptor recycling. The results of this study suggest that ohmefentanyl-induced internalization of human mu opioid receptor in Sf9 insect cells occurs via Gi/o protein-dependent process that likely involves clathrin-coated pits. In addition, the recycling process displays the differential modes of action of different agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号