首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilin isoforms in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Eukaryotic cells contain a large number of actin binding proteins of different functions, locations and concentrations. They bind either to monomeric actin (G-actin) or to actin filaments (F-actin) and thus regulate the dynamic rearrangement of the actin cytoskeleton. The Dictyostelium discoideum genome harbors representatives of all G-actin binding proteins including actobindin, twinfilin, and profilin. A phylogenetic analysis of all profilins suggests that two distinguishable groups emerged very early in evolution and comprise either vertebrate and viral profilins or profilins from all other organisms. The newly discovered profilin III isoform in D. discoideum shows all functions that are typical for a profilin. However, the concentration of the third isoform in wild type cells reaches only about 0.5% of total profilin. In a yeast-2-hybrid assay profilin III was found to bind specifically to the proline-rich region of the cytoskeleton-associated vasodilator-stimulated phosphoprotein (VASP). Immunolocalization studies showed similar to VASP the profilin III isoform in filopodia and an enrichment at their tips. Cells lacking the profilin III isoform show defects in cell motility during chemotaxis. The low abundance and the specific interaction with VASP argue against a significant actin sequestering function of the profilin III isoform.  相似文献   

2.
Transformation progression of epithelial cells involves alterations in their morphology, polarity, and adhesive characteristics, all of which are associated with the loss and/or reorganization of actin structures. To identify the underlying mechanism of formation of the adhesion-dependent, circumferential actin network, the expression and localization of the actin binding and regulating proteins (ABPs), vinculin, VASP, and profilin were evaluated. Experimental depolarization of epithelial cells results in the loss of normal F-actin structures and the transient upregulation of vinculin, VASP, and profilin. This response is due to the loss of cell-cell, and not cell-substrate interactions, since cells that no longer express focal adhesions or stress fibers are still sensitive to changes in adhesion and manifest this in the altered profile of expression of these ABPs. Transient upregulation is dependent upon de novo protein synthesis, and protein kinase-, but not phosphatase-sensitive signal transduction pathway(s). Inhibition of the synthesis of these proteins is accompanied by dephosphorylation of the ribosomal S6 protein, but does not involve inhibition of the PI3-kinase-Akt-mTOR pathway. Constitutive expression of VASP results in altered cell morphology and adhesion and F-actin and vinculin structures. V12rac1 expressing epithelial cells are constitutively nonadhesive, malignantly transformed, and constitutively express high levels of these ABPs, with altered subcellular localizations. Transformation suppression is accompanied by the restoration of normal levels of the three ABPs, actin structures, adhesion, and epithelial morphology. Thus, vinculin, VASP, and profilin are coordinately regulated by signal transduction pathways that effect a translational response. Additionally, their expression profile maybe indicative of the adhesion and transformation status of epithelial cells.  相似文献   

3.
This paper documents the reversible appearance of high-affinity complexes of profilin and gelsolin with actin in extracts of platelets undergoing activation and actin assembly. Sepharose beads coupled to either monoclonal anti-gelsolin antibodies or to polyproline were used to extract gelsolin and profilin, respectively, from EGTA-containing platelet extracts and determine the proportion of these molecules bound to actin with sufficient affinity to withstand dilution (high-affinity complexes). Resting platelets (incubated for 30 min at 37 degrees C after gel filtration) contained nearly no high-affinity actin/gelsolin or actin/profilin complexes. Thrombin, within seconds, caused quantitative conversion of platelet profilin and gelsolin to high-affinity complexes with actin, but these complexes were not present 5 min after stimulation. The calcium-dependent actin filament-severing activity of platelet extracts, a function of free gelsolin, fell in concert with the formation of EGTA-stable actin/gelsolin complexes, and rose when the adsorption experiments indicated that free gelsolin was restored. The dissociation of high-affinity complexes was temporally correlated with the accumulation of actin in the Triton-insoluble cytoskeleton.  相似文献   

4.
Directed cortical actin assembly is the driving force for intercellular adhesion. Regulated by phosphorylation, vasodilator-stimulated phosphoprotein (VASP) participates in actin fiber formation. We screened for endothelial proteins, which bind to VASP, dependent on its phosphorylation status. Differential proteomics identified αII-spectrin as such a VASP-interacting protein. αII-Spectrin binds to the VASP triple GP5-motif via its SH3 domain. cAMP-dependent protein kinase–mediated VASP phosphorylation at Ser157 inhibits αII-spectrin–VASP binding. VASP is dephosphorylated upon formation of cell–cell contacts and in confluent, but not in sparse cells, αII-spectrin colocalizes with nonphosphorylated VASP at cell–cell junctions. Ectopic expression of the αII-spectrin SH3 domain at cell–cell contacts translocates VASP, initiates cortical actin cytoskeleton formation, stabilizes cell–cell contacts, and decreases endothelial permeability. Conversely, the permeability of VASP-deficient endothelial cells (ECs) and microvessels of VASP-null mice increases. Reconstitution of VASP-deficient ECs rescues barrier function, whereas αII-spectrin binding-deficient VASP mutants fail to restore elevated permeability. We propose that αII-spectrin–VASP complexes regulate cortical actin cytoskeleton assembly with implications for vascular permeability.  相似文献   

5.
Ena/VASP proteins regulate the actin cytoskeleton during cell migration and morphogenesis and promote assembly of both filopodial and lamellipodial actin networks. To understand the molecular mechanisms underlying their cellular functions we used total internal reflection fluorescence microscopy to visualize VASP tetramers interacting with static and growing actin filaments in vitro. We observed multiple filament binding modes: (1) static side binding, (2) side binding with one-dimensional diffusion, and (3) processive barbed end tracking. Actin monomers antagonize side binding but promote high affinity (K(d) = 9 nM) barbed end attachment. In low ionic strength buffers, VASP tetramers are weakly processive (K(off) = 0.69 s(-1)) polymerases that deliver multiple actin monomers per barbed end-binding event and effectively antagonize filament capping. In higher ionic strength buffers, VASP requires profilin for effective polymerase and anti-capping activity. Based on our observations, we propose a mechanism that accounts for all three binding modes and provides a model for how VASP promotes actin filament assembly.  相似文献   

6.
Lamellipodial protrusion is regulated by Ena/VASP proteins. We identified Lamellipodin (Lpd) as an Ena/VASP binding protein. Both proteins colocalize at the tips of lamellipodia and filopodia. Lpd is recruited to EPEC and Vaccinia, pathogens that exploit the actin cytoskeleton for their own motility. Lpd contains a PH domain that binds specifically to PI(3,4)P2, an asymmetrically localized signal in chemotactic cells. Lpd's PH domain can localize to ruffles in PDGF-treated fibroblasts. Lpd overexpression increases lamellipodial protrusion velocity, an effect observed when Ena/VASP proteins are overexpressed or artificially targeted to the plasma membrane. Conversely, knockdown of Lpd expression impairs lamellipodia formation, reduces velocity of residual lamellipodial protrusion, and decreases F-actin content. These phenotypes are more severe than loss of Ena/VASP, suggesting that Lpd regulates other effectors of the actin cytoskeleton in addition to Ena/VASP.  相似文献   

7.
The recent elucidation of the three-dimensional structure of gelsolin segment 1 and profilin provides new insights on how these proteins recognize actin. Although the picture is still incomplete and not all biochemical data are consolidated, the results offer clues on how these proteins exert their effect on actin and how they may modulate the cytoskeleton dynamics. Binding studies on the villin head piece, thymosin β4 and mutants of both peptides allowed to identify critical residues important for actin binding and give the first picture of new actin binding interfaces. The interface of the modelled actomyosin complex is also briefly discussed.  相似文献   

8.
Ena/VASP is required for endothelial barrier function in vivo   总被引:3,自引:0,他引:3       下载免费PDF全文
Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell–cell and cell–matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response to shear stress. These findings demonstrate that Ena/VASP is critical for actin cytoskeleton remodeling events involved in the maintenance of functional endothelia.  相似文献   

9.
Summary It has been reported that endothelial cells suspended in three-dimensional type I collagen gels can be induced to undergo tube formation by 12-o-tetradecanoyl phorbol 13-acetate (TPA). In this report, we show that TPA-induced endothelial cell tube formation can be further enhanced by the addition of other matrix components in the collagen gels. In the presence of TPA, both high molecular weight hyaluronate and chondroitin sulfate elicit a dose-dependent stimulation of tube formation. The enhanced tube formation appears to be due to an increase in the number of cells undergoing morphogenesis as the average length per tube is not obviously increased. Concomitant with the increased cell morphogenesis, there is an increase in proteolytic activity secreted by the cells. Treatment of cells with cycloheximide suppresses hyaluronate- and chondroitin sulfate-enhanced cell morphogenesis and proteolytic activity suggesting that new protein synthesis, perhaps proteases, is necessary for endothelial cell morphogenesis. The possible role of the production of proteolytic activity in endothelial cell tube formation is discussed.  相似文献   

10.
11.
Nitric oxide (NO)- and atrial natriuretic peptide (ANP)-initiated cGMP signaling cascades are important in the maintenance of cardiovascular homeostasis. The molecular signaling mechanisms downstream of cGMP are not well understood, however. We have used small interfering RNA (siRNA) approaches to specifically knock down a series of signaling proteins in bovine aortic endothelial cells, and we have combined biochemical analyses with physiological assays to investigate cGMP-mediated signal transduction pathways. Activation of particulate guanylate cyclase (GC-A) by ANP leads to a substantial, dose-dependent, rapid, and sustained increase in intracellular cGMP. In contrast, stimulation of soluble guanylate cyclase by NO yields only a weak and transient increase in cGMP. ANP-induced cGMP production is selectively suppressed by siRNA-mediated knockdown of GC-A. ANP greatly enhances the phosphorylation at Ser-239 of the vasodilator-stimulated phosphoprotein (VASP), a major substrate of cGMP-dependent protein kinase (PKG) that significantly influences actin dynamics. Moreover, the ANP-induced phosphorylation of VASP at Ser-239 is accompanied by increased actin stress fiber formation and enhanced endothelial tube formation. siRNA-mediated knockdown of GC-A, VASP, or PKG abolishes ANP-induced VASP Ser-239 phosphorylation, stress fiber formation, and endothelial tube formation. We have demonstrated similar findings in human umbilical vein endothelial cells, where ANP substantially enhances intracellular cGMP content, phosphorylation of VASP at Ser-239, and endothelial tube formation. Taken together, our findings suggest that ANP-mediated cGMP signal transduction pathways regulate PKG phosphorylation of VASP Ser-239 in endothelial cells, resulting in reorganization of the actin cytoskeleton and enhancement of angiogenesis.  相似文献   

12.
An initial step in platelet shape change is disassembly of actin filaments, which are then reorganized into new actin structures, including filopodia and lamellipodia. This disassembly is thought to be mediated primarily by gelsolin, an abundant actin filament-severing protein in platelets. Shape change is inhibited by VASP, another abundant actin-binding protein. Paradoxically, in vitro VASP enhances formation of actin filaments and bundles them, activities that would be expected to increase shape change, not inhibit it. We hypothesized that VASP might inhibit shape change by stabilizing filaments and preventing their disassembly by gelsolin. Such activity would explain VASP's known physiological role. Here, we test this hypothesis in vitro using either purified recombinant or endogenous platelet VASP by fluorescence microscopy and biochemical assays. VASP inhibited gelsolin's ability to disassemble actin filaments in a dose-dependent fashion. Inhibition was detectable at the low VASP:actin ratio found inside the platelet (1:40 VASP:actin). Gelsolin bound to VASP-actin filaments at least as well as to actin alone. VASP inhibited gelsolin-induced nucleation at higher concentrations (1:5 VASP:actin ratios). VASP's affinity for actin (K(d) approximately 0.07 microM) and its ability to promote polymerization (1:20 VASP actin ratio) were greater with Ca(++)-actin than with Mg(++)-actin (K(d) approximately 1 microM and 1:1 VASP), regardless of the presence of gelsolin. By immunofluorescence, VASP and gelsolin co-localized in the filopodia and lamellipodia of platelets spreading on glass, suggesting that these in vitro interactions could take place within the cell as well. We conclude that VASP stabilizes actin filaments to the severing effects of gelsolin but does not inhibit gelsolin from binding to the filaments. These results suggest a new concept for actin dynamics inside cells: that bundling proteins protect the actin superstructure from disassembly by severing, thereby preserving the integrity of the cytoskeleton.  相似文献   

13.
The cytoskeleton plays a central role for the integration of biochemical and biomechanical signals across the cell required for complex cellular functions. Recent studies indicate that the intermediate filament vimentin is necessary for endothelial cell morphogenesis e.g. in the context of leukocyte transmigration. Here, we present evidence, that the scaffold provided by vimentin is essential for VASP localization and PKG mediated VASP phosphorylation and thus controls endothelial cell migration and proliferation. Vimentin suppression using siRNA technique significantly decreased migration velocity by 50% (videomicroscopy), diminished transmigration activity by 42.5% (Boyden chamber) and reduced proliferation by 43% (BrdU-incorporation). In confocal microscopy Vimentin colocalized with VASP and PKG in endothelial cells. Vimentin suppression was accompanied with a translocation of VASP from focal contacts to the perinuclear region. VASP/Vimentin and PKG/Vimentin colocalization appeared to be essential for proper PKG mediated VASP phosphorylation because we detected a diminished expression of PKG and pSer239-VASP in vimentin-suppressed cells, Furthermore, the induction of VASP phosphorylation in perfused arteries was markedly decreased in vimentin knockout mice compared to wildtypes. A link is proposed between vimentin, VASP phosphorylation and actin dynamics that delivers an explanation for the important role of vimentin in controlling endothelial cell morphogenesis.  相似文献   

14.
Shigella move through the cytosol of infected cells by assembly of a propulsive actin tail at one end of the bacterium. Vasodilator-stimulated phosphoprotein (VASP), a member of the Ena/VASP family of proteins, is important in cellular actin dynamics and is present on intracellular Shigella. VASP binds both profilin, an actin monomer-binding protein, and vinculin, a component of intercellular contacts that also binds the Shigella actin assembly protein IcsA. It has been postulated that VASP might serve as a linker between vinculin and profilin on intracellular Shigella, thereby delivering profilin to the Shigella actin assembly machinery. We show that Shigella actin-based motility is unaltered in cells that are deficient for the Ena/VASP family of proteins. In these cells, Shigella form normal-appearing actin tails and move at rates that are comparable to the rates of bacterial movement in Ena/VASP-deficient cells complemented with the Ena/VASP family member Mena. Finally, whereas vinculin can bind the Arp2/3 complex, we show that Arp2/3 recruitment to Shigella is not correlated with vinculin recruitment, indicating that the role of vinculin in Shigella motility is not recruitment of Arp2/3. Thus, although VASP is recruited to the surface of intracellular Shigella, it is not essential for Shigella actin-based motility.  相似文献   

15.
Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro­tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element.  相似文献   

16.
The growing importance of vesicular trafficking and cytoskeleton dynamic reorganization during plant development requires the exploitation of novel experimental approaches. Several genetic and cell biological studies have used diverse pharmaceutical drugs that inhibit vesicular trafficking and secretion to study these phenomena. Here, proteomic and cell biology approaches were applied to study effects of brefeldin A (BFA), an inhibitor of vesicle recycling and secretion, in Arabidopsis roots. The main aim of this study was to obtain an overview of proteins affected by BFA, but especially to identify new proteins involved in the vesicular trafficking and its cross-talk to the actin cytoskeleton. The results showed that BFA altered vesicular trafficking and caused the formation of BFA-compartments which was accompanied by differential expression of several proteins in root cells. Some of the BFA-up-regulated proteins belong to the class of the vesicular trafficking proteins, such as V-ATPase and reversibly glycosylated polypeptide, while others, such as profilin 2 and elongation factor 1 alpha, are rather involved in the remodeling of the actin cytoskeleton. Upregulation of profilin 2 by BFA was verified by immunoblot and live imaging at subcellular level. The latter approach also revealed that profilin 2 accumulated in BFA-compartments which was accompanied by remodeling of the actin cytoskeleton in BFA-treated root cells. Thus, profilin 2 seems to be involved in the cross-talk between vesicular trafficking and the actin cytoskeleton, in a BFA-dependent manner.  相似文献   

17.
Ena/VASP proteins influence the organization of actin filament networks within lamellipodia and filopodia of migrating cells and in actin comet tails. The molecular mechanisms by which Ena/VASP proteins control actin dynamics are unknown. We investigated how Ena/VASP proteins regulate actin polymerization at actin filament barbed ends in vitro in the presence and absence of barbed end capping proteins. Recombinant His-tagged VASP increased the rate of actin polymerization in the presence of the barbed end cappers, heterodimeric capping protein (CP), CapG, and gelsolin-actin complex. Profilin enhanced the ability of VASP to protect barbed ends from capping by CP, and this required interactions of profilin with G-actin and VASP. The VASP EVH2 domain was sufficient to protect barbed ends from capping, and the F-actin and G-actin binding motifs within EVH2 were required. Phosphorylation by protein kinase A at sites within the VASP EVH2 domain regulated anti-capping and F-actin bundling by VASP. We propose that Ena/VASP proteins associate at or near actin filament barbed ends, promote actin assembly, and restrict the access of barbed end capping proteins.  相似文献   

18.
Profilins are small proteins that form complexes with G-actin and phosphoinositides and are therefore considered to link the microfilament system to signal transduction pathways. In addition, they bind to poly-L-proline, but the biological significance of this interaction is not yet known. The recent molecular cloning of the vasodilator-stimulated phosphoprotein (VASP), an established in vivo substrate of cAMP- and cGMP-dependent protein kinases, revealed the presence of a proline-rich domain which prompted us to investigate a possible interaction with profilins. VASP is a microfilament and focal adhesion associated protein which is also concentrated in highly dynamic regions of the cell cortex. Here, we demonstrate that VASP is a natural proline-rich profilin ligand. Human platelet VASP bound directly to purified profilins from human platelets, calf thymus and birch pollen. Moreover, VASP and a novel protein were specifically extracted from total cell lysates by profilin affinity chromatography and subsequently eluted either with poly-L-proline or a peptide corresponding to a proline-rich VASP motif. Finally, the subcellular distributions of VASP and profilin suggest that both proteins also interact within living cells. Our data support the hypothesis that profilin and VASP act in concert to convey signal transduction to actin filament formation.  相似文献   

19.
Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser157 phosphorylation by different kinases. Inhibition of VASP Ser157 phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser157 mediates its localization at the membrane, but that VASP Ser157 phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.  相似文献   

20.
The objective of the present study was to evaluate how different ligand interactions of profilin-1 (Pfn1), an actin-binding protein that is upregulated during capillary morphogenesis of vascular endothelial cells (VEC), contribute to migration and capillary forming ability of VEC. We adopted a knockdown-knockin experimental system to stably express either fully functional form or mutants of Pfn1 that are impaired in binding to two of its major ligands, actin (H119E mutant) and proteins containing polyproline domains (H133S mutant), in a human dermal microvascular cell line (HmVEC) against near-null endogenous Pfn1 background. We found that silencing endogenous Pfn1 expression in HmVEC leads to slower random migration, reduced velocity of membrane protrusion and a significant impairment in matrigel-induced cord formation. Only re-expression of fully functional but not any of the two ligand-binding deficient mutants of Pfn1 rescues the above defects. We further show that loss of Pfn1 expression in VEC inhibits three-dimensional capillary morphogenesis, MMP2 secretion and ECM invasion. VEC invasion through ECM is also inhibited when actin and polyproline interactions of Pfn1 are disrupted. Together, these experimental data demonstrate that Pfn1 regulates VEC migration, invasion and capillary morphogenesis through its interaction with both actin and proline-rich ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号