首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystals of beta-amylase from Bacillus cereus belong to space group P21 with the following cell dimensions: a = 57.70 A, b = 92.87 A, c = 65.93 A, and beta =101.95 degrees. The structures of free and maltose-bound beta-amylases were determined by X-ray crystallography at 2.1 and 2.5 A with R-factors of 0.170 and 0.164, respectively. The final model of the maltose-bound form comprises 516 amino acid residues, four maltose molecules, 275 water molecules, one Ca2+, one acetate, and one sulfate ion. The enzyme consists of a core (beta/alpha)8-barrel domain (residues 5-434) and a C-terminal starch-binding domain (residues 435-613). Besides the active site in the core where two maltose molecules are bound in tandem, two novel maltose-binding sites were found in the core L4 region and in the C-terminal domain. The structure of the core domain is similar to that of soybean beta-amylase except for the L4 maltose-binding site, whereas the C-terminal domain has the same secondary structure as domain E of cyclodextrin glucosyltransferase. These two maltose-binding sites are 32-36 A apart from the active site. These results indicate that the ability of B. cereus beta-amylase to digest raw starch can be attributed to the additional two maltose-binding sites.  相似文献   

2.
AIMS: This study identified and studied the response of five Bacillus strains, isolated from alkaline cleaning in place (CIP) solutions, to alkaline conditions. METHODS AND RESULTS: Isolates were identified as B. cereus by 16S rDNA sequencing. External and internal cell pH and buffering capacity data of a representative strain, Bacillus DL5, were compared to B. cereus ATCC 10702. Results indicated that a buffering system was induced when the pH of the growth medium increased to above pH 10, which was effective up to pH 12 and presumably cell wall associated. Volume measurements and confocal scanning laser microscope images of Bacillus DL5 cells showed that cells exhibited more pronounced stress symptoms when exposed to pH 10 than at pHs above 10. Long-term exposure of Bacillus DL5 to pH 10 or 10.5 indicated that cells grew in planktonic form and formed biofilms at both pHs. CONCLUSIONS: Bacillus DL5 was a neutrophile with a growth pH range similar to B. cereus ATCC 10702, but tolerated alkaline pH. This may be a general trait of the B. cereus species rather than a specific phenomenon of isolates from alkaline ecosystems. SIGNIFICANCE AND IMPACT OF THE STUDY: Other neutrophilic B. cereus isolates may exhibit similar responses to alkaline conditions as the isolates studied here. These results may have important implications for dairy manufacturers.  相似文献   

3.
The crystal structure of beta-amylase from Bacillus cereus var. mycoides was determined by the multiple isomorphous replacement method. The structure was refined to a final R-factor of 0.186 for 102,807 independent reflections with F/sigma(F) > or = 2.0 at 2.2 A resolution with root-mean-square deviations from ideality in bond lengths, and bond angles of 0.014 A and 3.00 degrees, respectively. The asymmetric unit comprises four molecules exhibiting a dimer-of-dimers structure. The enzyme, however, acts as a monomer in solution. The beta-amylase molecule folds into three domains; the first one is the N-terminal catalytic domain with a (beta/alpha)8 barrel, the second one is the excursion part from the first one, and the third one is the C-terminal domain with two almost anti-parallel beta-sheets. The active site cleft, including two putative catalytic residues (Glu172 and Glu367), is located on the carboxyl side of the central beta-sheet in the (beta/alpha)8 barrel, as in most amylases. The active site structure of the enzyme resembles that of soybean beta-amylase with slight differences. One calcium ion is bound per molecule far from the active site. The C-terminal domain has a fold similar to the raw starch binding domains of cyclodextrin glycosyltransferase and glucoamylase.  相似文献   

4.
The X-ray crystal structure of a catalytic site mutant of beta-amylase, E172A (Glu172 --> Ala), from Bacillus cereus var. mycoides complexed with a substrate, maltopentaose (G5), and the wild-type enzyme complexed with maltose were determined at 2.1 and 2.0 A resolution, respectively. Clear and continuous density corresponding to G5 was observed in the active site of E172A, and thus, the substrate, G5, was not hydrolyzed. All glucose residues adopted a relaxed (4)C(1) conformation, and the conformation of the maltose unit for Glc2 and Glc3 was much different from those of other maltose units, where each glucose residue of G5 is named Glc1-Glc5 (Glc1 is at the nonreducing end). A water molecule was observed 3.3 A from the C1 atom of Glc2, and 3.0 A apart from the OE1 atom of Glu367 which acts as a general base. In the wild-type enzyme-maltose complex, two maltose molecules bind at subsites -2 and -1 and at subsites +1 and +2 in tandem. The conformation of the maltose molecules was similar to that of the condensation product of soybean beta-amylase, but differed from that of G5 in E172A. When the substrate flips between Glc2 and Glc3, the conformational energy of the maltose unit was calculated to be 20 kcal/mol higher than that of the cis conformation by MM3. We suggest that beta-amylase destabilizes the bond that is to be broken in the ES complex, decreasing the activation energy, DeltaG(++), which is the difference in free energy between this state and the transition state.  相似文献   

5.
The gene encoding the beta-amylase of Bacillus cereus BQ10-S1 (SpoII) was cloned into Escherichia coli JM 109. A sequenced DNA fragment of 2,001 bp contains the beta-amylase gene. The N-terminal sequences (AVNGKG MNPDYKAYLMAPLKKI), the C-terminal sequences (SHTSSW), and the amino acid sequences of the five regions in the beta-amylase molecules were determined. The mature beta-amylase contains 514 amino acid residues with a molecular mass of 57,885 Da. The amino acid sequence homology with those of known beta-amylases was 52.7% for Bacillus polymyxa, 52.0% for Bacillus circulans, 43.4% for Clostridium thermosulfurogenes, 31.8% for Arabidopsis thaliana, 31.5% for barley, 29.9% for sweet potato, and 28.9% for soybean. Ten well-conserved regions were found between the N terminus and the area around residue 430, but the C-terminal region of 90 residues has no similarity with those of the plant beta-amylases. The homology search revealed that this C-terminal region has homology with C-terminal regions of the beta-amylase from C. thermosulfurogenes, some bacterial alpha-amylases, cyclodextrin glucanotransferase, and glucoamylase. Some of these sequences are known as the raw-starch-binding domain. These results suggest that B. cereus beta-amylase has an extra domain which has raw-starch-binding ability and that the domain has considerable sequence homology with those of other amylases or related enzymes from a wide variety of microorganisms.  相似文献   

6.
Comparison of the architecture around the active site of soybean beta-amylase and Bacillus cereus beta-amylase showed that the hydrogen bond networks (Glu380-(Lys295-Met51) and Glu380-Asn340-Glu178) in soybean beta-amylase around the base catalytic residue, Glu380, seem to contribute to the lower pH optimum of soybean beta-amylase. To convert the pH optimum of soybean beta-amylase (pH 5.4) to that of the bacterial type enzyme (pH 6.7), three mutants of soybean beta-amylase, M51T, E178Y, and N340T, were constructed such that the hydrogen bond networks were removed by site-directed mutagenesis. The kinetic analysis showed that the pH optimum of all mutants shifted dramatically to a neutral pH (range, from 5.4 to 6.0-6.6). The Km values of the mutants were almost the same as that of soybean beta-amylase except in the case of M51T, while the Vmax values of all mutants were low compared with that of soybean beta-amylase. The crystal structure analysis of the wild type-maltose and mutant-maltose complexes showed that the direct hydrogen bond between Glu380 and Asn340 was completely disrupted in the mutants M51T, E178Y, and N340T. In the case of M51T, the hydrogen bond between Glu380 and Lys295 was also disrupted. These results indicated that the reduced pKa value of Glu380 is stabilized by the hydrogen bond network and is responsible for the lower pH optimum of soybean beta-amylase compared with that of the bacterial beta-amylase.  相似文献   

7.
淀粉水解酶广泛用于淀粉加工业中,何秉旺等在选育产耐热β-淀粉酶菌株中得到一株坚强芽孢杆菌(Bacillusfirmus)725,该菌株产生的淀粉酶有较好的热稳定性,水解淀粉的主要产物为麦芽糖。自然菌株产生的淀粉酶往往是多种淀粉酶的混合,为进一步研究该菌株产生的淀粉酶的性质和在工业上应用的可能性,分离了三个淀粉酶基因,在大肠杆菌中克隆和表达[1]。其中重组质粒pBA150产生的淀粉酶的淀粉水解产物主要是麦芽糖[1]。β-淀粉酶(EC.3.2.1.2)水解淀粉的主要产物是麦芽糖,工业上可用于生产高麦芽糖浆,近年来又有β-淀粉酶用于啤酒工业的报道[2]。本文报道重组质粒pBA150的β-淀粉酶基因的序列分析及推导出的氨基酸序列同己知β-淀粉酶的氨基酸序列比较。  相似文献   

8.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   

9.
In the previous X-ray crystallographic study, it was found that beta-amylase from Bacillus cereus var. mycoides has three carbohydrate-binding sites aside from the active site: two (Site2 and Site3) in domain B and one (Site1) in domain C. To investigate the roles of these sites in the catalytic reaction and raw starch-binding, Site1 and Site2 were mutated. From analyses of the raw starch-binding of wild-type and mutant enzymes, it was found that Site1 contributes to the binding affinity to raw-starch more than Site2, and that the binding capacity is maintained when either Site1 or Site2 exists. The raw starch-digesting ability of this enzyme was poor. From inhibition studies by maltitol, GGX and alpha-CD for hydrolyses of maltopentaose (G5) and amylose ( (n) = 16) catalyzed by wild-type and mutant enzymes, it was found that alpha-CD is a competitive inhibitor, while, maltitol behaves as a mixed-type or competitive inhibitor depending on the chain length of the substrate and the mutant enzyme. From the analysis of the inhibition mechanism, we conclude that the bindings of maltitol and GGX to Site2 in domain B form an abortive ESI complex when amylose ( (n) = 16) is used as a substrate.  相似文献   

10.
Bacillus cereus topoisomerase IIIbeta (bcTopo IIIbeta) has been cloned, overexpressed and biochemically characterized. This enzyme exhibits 64% and 33% sequence identity to Bacillus subtilis topoisomerase III (bsTopo III) and Escherichia coli topoisomerase III (ecTopo III) respectively. The enzymatic properties of bcTopo IIIbeta differ substantially from other bacterial type IA topoisomerases, including E. coli type IA topoisomerases and B. cereus topoisomerase I (bcTopo I) and IIIalpha (bcTopo IIIalpha). bcTopo IIIbeta only partially relaxes negatively supercoiled DNA and appears incapable of generating fully relaxed topoisomers. In contrast to ecTopo III and bcTopo IIIalpha, bcTopo IIIbeta is not a decatenase. bcTopo IIIbeta is unable to compensate the loss of ecTopo III in vivo. Therefore, bcTopo IIIbeta is a unique prokaryotic type IA topoisomerase that is different from previously characterized topoisomerases.  相似文献   

11.
Purification of a phospholipase C from Bacillus cereus   总被引:6,自引:0,他引:6  
  相似文献   

12.
Dal Peraro M  Vila AJ  Carloni P 《Proteins》2004,54(3):412-423
Structure and dynamics of substrate binding (cefotaxime) to the catalytic pocket of the mononuclear zinc-beta-lactamase from Bacillus cereus are investigated by molecular dynamics simulations. The calculations, which are based on the hydrogen-bond pattern recently proposed by Dal Peraro et al. (J Biol Inorg Chem 2002; 7:704-712), are carried out for both the free and the complexed enzyme. In the resting state, active site pattern and temperature B-factors are in agreement with crystallographic data. In the complexed form, cefotaxime is accommodated into a stable orientation in the catalytic pocket within the nanosecond timescale, interacting with the enzyme zinc-bound hydroxide and the surrounding loops. The beta-lactam ring remains stable and very close to the hydroxide nucleophile agent, giving a stable representation of the productive enzyme-substrate complex.  相似文献   

13.
A gene encoding the β-amylase of Bacillus circulans was isolated from a lambda library and sequenced. The structural gene consists of a 1725 bp open reading frame encoding a polypeptide with a predicted molecular wt of 62830 Daltons. Two active forms of the enzyme were found when the gene was expressed In E. coli. The larger 60 kD form was approximately 3 kD larger than the mature β-amylase secreted from B. circulans, suggesting that processing of this protein is different between the two species. The smaller 49 kD form is also present at a low level in B. circulans and may result from proteolytic cleavage. The enzyme has a temperature optimum of 50°C. Two other genes, one encoding an α-amylase and one a pullulanase, were also isolated from the lambda library.  相似文献   

14.
The gene for beta-amylase was isolated from Bacillus polymyxa by molecular cloning in B. subtilis. B. subtilis cells containing this gene express and secrete an amylase which resembles the B. polymyxa beta-amylase and barley beta-amylase in terms of the products it generates during carbohydrate hydrolysis. Starch hydrolysis with this beta-amylase produces maltose, not glucose, whereas maltotriose and cycloheptaose are resistant to the action of this beta-amylase. The enzyme has a molecular weight of approximately 68,000. Restriction endonuclease mapping demonstrated that the DNA inserted in pBD64 and containing the gene is approximately 3 kilobases in length.  相似文献   

15.
pH gradients through colonies of Bacillus cereus and the surrounding agar.   总被引:3,自引:0,他引:3  
pH-sensitive microelectrodes, constructed with a tip diameter of about 4 microns, were deployed through 24 h and 48 h colonies of Bacillus cereus incubated on CYS medium (Casamino acids, yeast extract, salts), with and without glucose. Measurements of pH were used to construct pH profiles through the colony and the surrounding agar. pH gradients could be detected for at least 800 microns into the agar beneath a 24 h colony, and to approximately 10 mm horizontally away from the edge of the colony. In older colonies, the lateral gradient extended for over 20 mm. The pH of the underlying agar was increased by up to 1.45 pH units after 48 h growth without glucose. When colonies were grown with glucose, a significant area of acidification was observed within the colony in addition to a zone of alkalinization present at its periphery. Acidification was thought to be due to the anaerobic fermentation of glucose producing organic acids whilst alkalinization was due to the aerobic oxidation of amino acids releasing ammonia.  相似文献   

16.
A Sloma  M Gross 《Nucleic acids research》1983,11(14):4997-5004
The gene for the type I beta-lactamase from Bacillus cereus has been cloned in Bacillus subtilis and Escherichia coli. In B. subtilis, penicillinase activity is detected and the enzyme is secreted. In E. coli, the gene confers ampicillin resistance. The cloned insert is 4.3 kb in length and DNA sequencing has revealed the location of the gene, its promoter and signal peptide.  相似文献   

17.
18.
A gene encoding the beta-amylase of Bacillus circulans was isolated from a lambda library and sequenced. The structural gene consists of a 1725 bp open reading frame encoding a polypeptide with a predicted molecular wt of 62830 Daltons. Two active forms of the enzyme were found when the gene was expressed in E. coli. The larger 60 kD form was approximately 3 kD larger than the mature beta-amylase secreted from B. circulans, suggesting that processing of this protein is different between the two species. The smaller 49 kD form is also present at a low level in B. circulans and may result from proteolytic cleavage. The enzyme has a temperature optimum of 50 degrees C. Two other genes, one encoding an alpha-amylase and one a pullulanase, were also isolated from the lambda library.  相似文献   

19.
Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus   总被引:2,自引:0,他引:2  
Microbial glycosyltransferases can convert many small lipophilic compounds such as phenolics, terpenoids, cyanohydrins and alkaloids into glycons using uridine-diphosphate-activated sugars. The main chemical functions of glycosylation processes are stabilization, detoxification and solubilization of the substrates. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-1, was cloned by PCR and sequenced. BcGT-1 was expressed in Escherichia coli BL21 (DE3) with a his-tag and purified using a His-tag affinity column. BcGT-1 could use apigenin, genistein, kaempferol, luteolin, naringenin and quercetin as substrates and gave two reaction products. The enzyme preferentially glycosylated at the 3-hydroxyl group, but it could transfer a glucose group onto the 7-hydroxyl group when the 3-hydroxyl group was not available. The reaction products made by biotransformation of flavonoids with E. coli expressing BcGT-1 are similar to those produced with the purified recombinant enzyme. Thus, this work provides a method that might be useful for the biosynthesis of flavonoid glucosides and for the glycosylation of related compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号