首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的: 构建α1亚基诱导表达、β2和γ2L亚基稳定表达的人源α1β2γ2L-GABAAR-CHO(Chinese hamster ovary)细胞株。方法: 从人cDNA文库中扩增α1、β2、γ2L亚基编码基因,分别构建亚基表达载体;将三个亚基表达载体共转染CHO-K1细胞,通过抗性筛选、膜电位检测法进行稳定表达克隆筛选;通过qPCR、Western blot对亚基表达进行鉴定;以激动剂GABA、阳性变构调节剂地西泮(diazepam,Dia)、拮抗剂荷包牡丹碱(bicuculine)为工具药,采用全细胞膜片钳方法及膜电位检测法对稳定表达细胞的药理学功能进行鉴定。结果: 经克隆筛选获得表达量较高的α1β2γ2L-GABAAR-CHO并对其亚基表达鉴定,结果显示该细胞稳定表达α1、β2、γ2L亚基,构建的α1β2γ2L-GABAAR-CHO细胞仅在加入四环素(tetracyclin)诱导的情况下表达α1亚基并与β2、γ2L组装成具有功能活性的α1β2γ2L-GABAAR;对其进行全细胞膜片钳检测研究发现,GABA可对其产生激动效应,引起α1β2γ2L-GABAAR-CHO细胞产生氯离子通道特征性电流变化,Dia可剂量依赖性地增强GABA对α1β2γ2L-GABAAR的激动效应;在膜电位检测研究中,获得GABA激动效应EC50为(177.72 ± 15.92)nmol/L,Dia变构效应EC50为(3.63±0.52)μmol/L,拮抗剂Bicuculine拮抗效应IC50为(538.83±29.55)nmol/L。结论: 通过采用诱导表达策略,成功构建了α1β2γ2L-GABAAR-CHO稳定表达细胞株,该细胞株具有对激动剂、阳性变构剂、拮抗剂特异性检测的药理学功能。  相似文献   

2.
We investigated the effect of β-endorphin on the activities of mitogen-activated protein kinases in cultured human articular chondrocytes in order to elucidate its effect on cartilage. Monolayer cultures of chondrocytes obtained from patients undergoing total knee arthroplasty were treated with 60, 600, or 6000 ng/ml β-endorphin, or 100 ng/ml naltrexone combined with 600 ng/ml β-endorphin. The regulation of three major mitogen-activated protein kinases phosphorylation, ERKp44/p42, p38, and JNK, was determined by Western blotting. We also examined the influence of specific mitogen-activated protein kinase inhibitors on IL-1β protein levels during β-endorphin stimulation. The results demonstrate that β-endorphin, dependent on concentration and duration of stimulation, significantly affected the activation of the three mitogen-activated protein kinases in cultured human articular chondrocytes. Naltrexone in some cases significantly regulated the mitogen-activated protein kinases in different ways when added to β-endorphin 600 ng/ml. Furthermore, specific mitogen-activated protein kinase inhibitors hindered the increase of IL-1β during β-endorphin incubation. The effect of β-endorphin seen in this study is considered critical for the production of several mediators of cartilage damage in an arthritic joint.  相似文献   

3.
Upon laser flash photolysis of β-carotene in chloroform instantaneous bleaching of β-carotene and concomitant formation of near infrared absorbing species are observed. One species, absorbing with maximum at 920 nm, is formed during the laser pulse (10 ns) and is practically gone in one millisecond, the decay showing a bi-exponential behaviour. The second species, absorbing with maximum at 1000 nm, is formed from the species absorbing at 920 nm by first order kinetics with a rate constant of 4.9·104 s-1 at 20°C. This second species decays by second order kinetics and is gone within a few milliseconds. An additional slow bleaching of β-carotene and formation of the species absorbing at 920 nm is observed. This slow bleaching/formation of transient absorption is probably due to processes involving free radicals generated during the instantaneous bleaching. The species absorbing at 920 nm is suggested to be either (i) a free radical adduct formed from β-carotene and chloroform or (ii) β-carotene after abstraction of a hydrogen atom. The species absorbing at 1000 nm is most likely the radical cation. Formation and decay of the near infrared absorbing species and bleaching of β-carotene are independent of whether oxygen is present or absent in the solutions.  相似文献   

4.
A microbial process for the production of optically-active γ-decalactone from the ricinoleic acid present as triglycerides in castor oil has been developed, γ-decalactone (γDL) is a component of some fruit flavours, being an important organoleptic component of peach flavours. Screening showed two red yeast microorganisms, Rhodotorula glutinis and Sporobolomyces odortts to be especially suitable for this biotransformation. The process involves lipase-mediated hydrolysis of the castor oil to give free ricinoleic acid, uptake of the acid by the cells and aerobic fermentation to achieve abbreviated β-oxidation of the ricinoleic acid (12-hydroxyoleic acid) into 4-hydroxydecanoic acid (4HDA), lactonisation of the acid into γ-DL, followed by solvent extraction and distillation. γ-DL broth concentrations of 0.5-1.2g · 1-t were obtained after 3-5 days from fermentation media containing 10 g · 1-1 castor oil, representing an 8.3-20.0% theoretical yield. Intermediates detected were consistent with the operation of the β-oxidation pathway. Appreciable amounts of novel metabolites identified as cis and trans isomers of a tetrahydrofuran (C10) were also produced. Their formation from 4HDA appeared to be non-enzymic and was favoured by anaerobic conditions. Yields of γ-DL were inversely proportional to the concentration of castor oil present in the medium, indicating that substrate inhibition takes place. The highest yields of γ-DL were obtained when castor oil was present from the beginning of the fermentation, rather than when added once the fermentation had become established, demonstrating that the β-oxidation pathway and/or transport system require continual induction. Significant amounts of γ-DL were not produced from other fatty acids, including ricinelaidic acid, the trans isomer of ricinoleic acid. γ-DL formation was dramatically inhibited by antibiotic inhibitors of oxidative phosphorylation, indicating the importance of intact β-oxidation pathways, whereas inhibitors of protein synthesis and cell-wall synthesis had much less marked effects. Selective extraction of 4HDA from the fermentation broths, and of γDL from broth lactonised by heating at low pH, could be achieved by adsorption to Amberlite XAD-1 and XAD-7 resins respectively. Some product could be recovered from the exit gases of the fermenter by passing through propylene glycol traps. This pathway is unusual in that it is a rare example of the truncated β-oxidation of a fatty acid by microorganisms. This effect probably occurs because of partial inhibition of one or more enzymes of the β-oxidation pathway by the C10 hydroxylated fatty acid intermediate(s) allowing intracellular accumulation of the 4HDA, followed by leakage out of the cell; although further metabolism of this C10 intermediate does take place slowly.  相似文献   

5.
Tetrahydro- β-carboline alkaloids that occur in foods such as wine, seasonings, vinegar and fruit products (juices, jams) acted as good radical scavengers (hydrogen- or electron donating) in the ABTS (2,2'-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay, and therefore, they could contribute to the beneficial antioxidant capacity attributed to foods. In contrast, the fully aromatic β-carbolines norharman and harman did not show any radical scavenger activity in the same assay. During the reaction with ABTS.++ radical cation, tetrahydro- β-carboline-3-carboxylic acid such as 1-methyl-1,2,3,4-tetrahydro- β-carboline-3-carboxylic acid (MTCA) and 1-methyl-1,2,3,4-tetrahydro- β-carboline-1,3-dicarboxylic acid (MTCA-COOH) were converted to harman, whereas 1,2,3,4-tetrahydro- β-carboline-3-carboxylic acid (THCA) and 1,2,3,4-tetrahydro- β-carboline-1,3-dicarboxylic acid (THCA-COOH) afforded norharman. These results suggest that food and naturally-occurring tetrahydro- β-carboline alkaloids if accumulated in tissues, as reported elsewhere, might exhibit antioxidant activity.  相似文献   

6.
The intracellular level of the proto-oncoprotein β-catenin is a parameter for the activity of the Wnt pathway, which has been linked to carcinogenesis. The paper introduces a novel sandwich-based ELISA for the determination of the β-catenin concentration in lysates from cells or tissues. The advantages of the method were proven by determining β-catenin levels in cell lines and in cells after activation of the Wnt pathway. Analysis revealed high β-catenin concentrations in the cell lines HeLa, KB, HT1080, MCF-7, U-87 and U-373, which had not been described before. β-Catenin concentrations were compared in HEK293 and C57MG cells after activation of the Wnt pathway. The β-catenin concentrations increased by different factors depending on whether the Wnt pathway was activated by incubation with LiCl or with Wnt-3a-conditioned medium. This finding indicated that the β-catenin level depends on the way and level of Wnt pathway activation. The quantitative analysis of β-catenin in colorectal tumours revealed high β-catenin levels in tumours with truncating mutations in the APC gene.  相似文献   

7.
8.
-Tocopherol is a lipophilic vitamin that exhibits an antioxidative activity. The purpose of this study was to clarify the roles of -tocopherol in the regulation of intracellular glutathione (GSH) levels in HaCaT keratinocytes. When HaCaT keratinocytes were cultivated with -tocopherol for 24 h, the intracellular GSH was increased at every concentration of -tocopherol tested. Furthermore, the HaCaT keratinocytes cultured with -tocopherol at 50 μM for 24 h exhibited resistance against H 2 O 2 . However, a short exposure of HaCaT keratinocytes to -tocopherol for 1 h did not influence either the GSH level or the resistance to H 2 O 2 . These findings suggest that GSH, which is inductively synthesized by -tocopherol, effectively reduces exogenous oxidative stress. To evaluate the effect of -tocopherol on the GSH level, BSO, which is a typical inhibitor of γ-glutamylcysteine synthetase ( γ-GCS), was used. When BSO was added to HaCaT keratinocytes, no action of -tocopherol on the GSH level was observed. On the other hand, -tocopherol resulted in the up-regulation of γ-GCS-HS (heavy subunit) mRNA. In addition, water soluble -tocopherol derivatives ( -tocopherol phosphate and trolox) caused no changes in GSH level. From these results, it was concluded that -tocopherol increases the intracellular GSH level of HaCaT keratinocytes through the up-regulation of γ-GCS-HS mRNA.  相似文献   

9.
We investigated the effects of acute exhaustive exercise and β-carotene supplementation on urinary 8-hydroxy-deoxyguanosine (8-OHdG) excretion in healthy nonsmoking men. Fourteen untrained male (19-22 years old) volunteers participated in a double blind design. The subjects were randomly assigned to either the β-carotene or placebo supplement group. Eight subjects were given 30 mg of β-carotene per day for 1 month, while six subjects were given a placebo for the same period. All subjects performed incremental exercise to exhaustion on a bicycle ergometer both before and after the 1-month β-carotene supplementation period. The blood lactate and pyruvate concentrations significantly increased immediately after exercise in both groups. The baseline plasma p-carotene concentration was significantly 17-fold higher after β-carotene supplementation. The plasma β-carotene decreased immediately after both trials of exercise, suggesting that β-carotene may contribute to the protection of the increasing oxidative stress during exercise. Both plasma hypoxanthine and xanthine increased immediately after exercise before and after supplementation. This thus suggests that both trials of exercise might enhance the oxidative stress. The 24-h urinary excretion of 8-OHdG was unchanged for 3 days after exercise before and after supplementation in both groups. However, the baseline urinary excretion of 8-OHdG before exercise tended to be lower after β-carotene supplementation. These results thus suggest that a single bout of incremental exercise does not induce the oxidative DNA damage, while β-carotene supplementation may attenuate it.  相似文献   

10.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   

11.
Production of β-glycosidases: β-xylosidase and β-glucosidase by the fungus Sclerotinia sclerotiorum was optimized in the presence of different carbon sources. Immobilization supports with different physico-chemical characteristics were evaluated for use in continuous reactors. Immobilization and activity yields were calculated. Among the adsorption on Duolite, Amberlite, Celite and DEAE-sepharose, and entrapment in polyacrylamide gel or reticulation using glutaraldehyde, highest yields were obtained when β-xylosidase was adsorbed on Duolite A 7 and when β-glucosidase was adsorbed on DEAE-sepharose.

Enzyme preparations from S. sclerotiorum cultures were used in a biphasic (alcohol/aqueous) medium for the synthesis of alkyl-glycosides by trans-glycosylation of sugars and long-chain alcohols. The synthesis was studied under different conditions with primary and secondary alcohols as substrates, in the presence of free or immobilized enzyme. Xylan and cellobiose were used for the synthesis of alkyl-xylosides and alkyl-glucosides, respectively. The majority of the immobilized preparations were unable to catalyze the synthesis of alkyl-glycosides.

Highest yields were obtained when using xylan and C4–C6-alcohols. The reaction produced alkyl-β-xyloside and alkyl-β-xylobioside, as confirmed by MS/MS. Up to 22 mM iso-amyl-xyloside and 14 mM iso-amyl-xylobioside were produced from iso-amyl alcohol and xylan.  相似文献   


12.
In the present report, we investigated the possible importance of β1 integrins in the growth and metastasis of a murine mammary carcinoma, SP1, and a metastatic variant, SP1-3M in vivo. CBA/J female mice bearing SP1 tumor transplants were injected with anti-β1 integrin IgG or control nonimmune IgG (200 μg per mouse; i.p.) every two days. Animals received anti-CD4 antibody (100 μg per mouse) at time zero to suppress immunity against rabbit IgG. Outgrowth of macroscopic metastases from SP1, but not from SP1-3M primary tumors, was markedly inhibited in animals receiving anti-β1 integrin IgG but not nonimmune IgG. To assess the stage(s) in the metastatic cascade affected, we examined the number and diameter of micrometastatic nodules in treated and untreated groups. The diameter of micrometastases was significantly reduced in SP1-tumor-bearing mice treated with anti-β1 integrin IgG compared to control IgG, although the number of nodules per cm2 of lung sections examined remained unchanged. No change in the number or size of micrometastases in SP1-3M tumor-bearing mice was observed. No difference in the binding, or complement-mediated and antibody-dependent cell-mediated cytotoxicity of anti-β1 integrin IgG with SP1 and SP1-3M cells was detected. The results suggest that under these conditions anti-β1 integrin inhibits metastatic tumor growth in lung tissue, but has minimal effect on intravasation, adhesion to target organs and extravasation.  相似文献   

13.
The polysaccharide chains and the crystallinity of β-glucan in a white sorghum variety, SK5912 were investigated using chemical and enzymic studies. Mild periodate oxidation and methylation, coupled to descending paper chromatography of products revealed the presence of unresolved non-carbohydrate moiety, 2, 4-and 2, 3-di-O-methyl -glucose residues (molar ratio; 18:3) and 2, 4, 6-and 2, 3, 6-tri-O-methyl -glucose residues (molar ratio; 1:14). Paper chromatography of the total acid hydrolysate also revealed a non-carbohydrate spot, identified as protein on the basis of positive Biuret and ninhydrin tests. The O-methyl -glucose residues suggest two polysaccharide chains designated X and Y. Chain X is formed through linking of β- -glucopyranosyl residues by (1→3) linkages with 85–86% (1→6) bonds at branch points and constitute about 6–7% of the β-glucan sample. Chain Y, which is 93–94% of the β-glucan polysaccharide chains, constitutes β- -glucopyranosyl residues in (1→4) linkages and 4–5% (1→6) bonds at branch points. Of the 18 branch points on the X-chains in a given β-glucan sample, about 15 are the Y chains interlinked to the X-chains through their (Y-chains) reducing ends. Both acid and enzyme hydrolyses of the β-glucan suggest two structural organizations, a crystalline and less crystalline granules, based on two first order kinetics. This was correlated by the progress curves obtained during hydrolysis with two purified isoforms of β-glucanases from the sorghum malt. The short and highly branched polysaccharide chains, and longer but less branched polysaccharide chains found in this β-glucan are reminiscent of the structures of amylopectin and amylose, respectively. The Kms of 0.30–0.32 and 0.42–0.50 mg β-glucan/ml for the β-glucanase isoforms also lay credence to both the crystalline forms and the highly polymerised nature of the β-glucan in white sorghum.  相似文献   

14.
The plasma concentration of 11β-hydroxy-4-androstene-3,17-dione (11β) is very high in 21-hydroxylase deficiency, Cushing’s syndrome, and hyperandrogenism of adrenal origin, and very low in congenital 11-hydroxylase deficiency and adrenal insufficiency. Thus, when plasma 4-androstenedione is elevated, it is useful to measure the plasma 11β level in order to determine the adrenal or ovarian origin of the hyperandrogenism.

To eliminate disadvantages related to the 11β radioimmunoassay (RIA), which uses a tritiated tracer, as well as the high cost associated with scintillation proximity assay (SPA), we developed a non-isotopic 11β assay that utilizes an 11β-biotin conjugate synthesized in our laboratory to measure time-resolved fluorescence after addition of streptavidin-europium to microtitration wells.

The analytical qualities of this assay are very similar to those of the radioimmunoassay using a tritiated tracer, and an extraction step followed by celite chromatography (which separates 11β from interfering plasma steroids) prior to a final radioimmuno-competition step. The correlation coefficient between 11β levels measured by time-resolved plasma 11β fluoroimmunoassay (TR-FIA) and RIA was 0.965.

Finally, the TR-FIA technique was more sensitive and of greater precision than the RIA method.  相似文献   


15.
The intracellular free Ca2+ ion concentration ([Ca2+]i) was measured using fura-2 microspec-trofluorimetry in individual rat pancreatic β-cells prepared by enzymatic digestion and fluorescence-activated cell sorting. The mean basal concentration of [Ca2+]i in β-cells in the presence of 4.4 mM glucose and 1.8 mM Ca2+ was 112±1.6 nM (n=207). The action of acetylcholine (ACh) was concentration-dependent, and raising the concentration resulted in [Ca2+]i spikes of increasing amplitude and duration in some, but not all of the β-cells. In addition, the β-cells demonstrated variable sensitivity to ACh. The increases in [Ca2+]i were rapid, transient and were blocked by atropine at 10-6M. A brief exposure to 50 mM K+ resulted in a transient increase in [Ca2+]i similar to that induced by ACh, but resistant to atropine. A high concentration of ACh (100μL 10-4M or 10-3M) induced [Ca2+]i oscillations in 11 out of 57 β-cells in the presence of 4.4 mM glucose. Using calcium channel blockers and Ca2+ free medium, the source of the increase in [Ca2+]i was deduced to be from extracellular spaces. Changing the temperature from 22 to 37°C did not affect the action of ACh on [Ca2+]i. These data strongly suggest that ACh exerted a direct action on [Ca2+]i in normal rat pancreatic β-cells and support a role for Ca2+ as a second messenger in the action of ACh.  相似文献   

16.
GADD34 is a member of a growth arrest and DNA damage (GADD)-inducible gene family. Here, we established a novel Chinese hamster ovary (CHO)-K1-derived cell line, CHO-K1-G34M, which carries a nonsense mutation (termed the Q525X mutation) in the GADD34 gene. The Q525X mutant protein lacks the C-terminal 66 amino acids required for GADD34 to bind to and activate protein phosphatase 1 (PP1). We investigated the effects of GADD34 with or without the Q525X mutation on the phosphorylation status of PP1 target proteins, including the α subunit of eukaryotic initiation factor 2 (eIF2α) and glycogen synthase kinase 3β (GSK3β). CHO-K1-G34M cells had higher levels of eIF2α phosphorylation compared to the control CHO-K1-normal cells both in the presence and absence of endoplasmic reticulum stress. Overexpression of the wild-type GADD34 protein in CHO-K1-normal cells largely reduced eIF2α phosphorylation, while overexpression of the Q525X mutant did not produce similar reductions. Meanwhile, neither wild type nor Q525X mutation of GADD34 affected the GSK3β phosphorylation status. GADD34 also did not affect the canonical Wnt signaling pathway downstream of GSK3β. Cell proliferation rates were higher, while expression levels of the cyclin-dependent kinase inhibitor p21 were lower in CHO-K1-G34M cells compared to the CHO-K1-normal cells. The GADD34 Q525X mutant had a reduced ability to inhibit cell proliferation and enhance p21 expression of the CHO-K1-normal cells compared to the wild-type GADD34 protein. These results suggest that the GADD34 protein C-terminal plays important roles in regulating not only eIF2α dephosphorylation but also cell proliferation in CHO-K1 cells.  相似文献   

17.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11β-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11β-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18β-glycyrrhetinic acid (18β-GA) derivatives (2–5) and their inhibitory activities against rat hepatic11β-HSD1 and rat renal 11β-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds’ ability to inhibit human 11β-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18β-GA derivatives 2 and 3 with apparent selectivity for rat 11β-HSD1 showed a high percentage inhibition for human microsomal 11β-HSD1 at 10 μM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18β-GA derivatives 4 and 5, although showing selectivity for rat 11β-HSD1 inhibited human microsomal 11β-HSD1 with IC50 values in the low micromolar range.  相似文献   

18.
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products.  相似文献   

19.
Park M  Lin L  Thomas S  Braymer HD  Smith PM  Harrison DH  York DA 《Peptides》2004,25(12):2127-2133
It has been suggested that the F1-ATPase β-subunit is the enterostatin receptor. We investigated the binding activity of the purified protein with a labeled antagonist, β-casomorphin1–7, in the absence and presence of cold enterostatin. 125I-β-casomorphin1–7 weakly binds to the rat F1-ATPase β-subunit. Binding was promoted by low concentrations of cold enterostatin but displaced by higher concentrations. To study the relationship between binding activity and feeding behavior, we examined the ability of a number of enterostatin analogs to affect β-casomorphin1–7 binding to the F1-ATPase β-subunit. Peptides that suppressed food intake promoted β-casomorphin1–7 binding whereas peptides that stimulated food intake or did not affect the food intake displaced β-casomorphin1–7 binding. Surface plasmon resonance measurements show that the β-subunit of F1-ATPase binds immobilized enterostatin with a dissociation constant of 150 nM, where no binding could be detected for the assembled F1-ATPase complex. Western blot analysis showed the F1-ATPase β-subunit was present on plasma and mitochondrial membranes of rat liver and amygdala. The data provides evidence that the F1-ATPase β-subunit is the enterostatin receptor and suggests that enterostatin and β-casomorphin1–7 bind to distinct sites on the protein.  相似文献   

20.
Phenoxyl radicals generated by laser flash photolysis were found to react with β-carotene with concomitant β-carotene bleaching in two parallel reactions with similar rates: (i) formation of a β-carotene adduct with a (pseudo) first order rate constant of 1-1.5 ± 104 s-1 with absorption maximum around 800 nm, and (ii) formation of a β-carotene radical cation with a (pseudo) first order rate constant of 2-3 ± 104 s-1 with absorption maximum around 920 nm. Both β-carotene radicals decay on a similar time scale and have virtually disappeared after 100 ms, the β-carotene adduct by a second order process. Oxygen had no effect on β-carotene bleaching or radical formation and decay. The reduction of phenoxyl radicals by β-carotene may prove important for an understanding of how β-carotene acts as an antioxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号