首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potential new metabolic pathway of melatonin biotransformation is described in this investigation. Melatonin was found to directly scavenge hydrogen peroxide (H(2)O(2)) to form N(1)-acetyl-N(2)-formyl-5-methoxykynuramine and, thereafter this compound could be enzymatically converted to N(1)-acetyl-5-methoxykynuramine by catalase. The structures of these kynuramines were identified using proton nuclear magnetic resonance, carbon nuclear magnetic resonance, and mass spectrometry. This is the first report to reveal a possible physiological association between melatonin, H(2)O(2), catalase, and kynuramines. Melatonin scavenges H(2)O(2) in a concentration-dependent manner. This reaction appears to exhibit two distinguishable phases. In the rapid reaction phase, the interaction between melatonin and H(2)O(2) reaches equilibrium rapidly (within 5 s). The rate constant for this phase was calculated to be 2.3 x 10(6) M(-1)s(-1). Thereafter, the relative equilibrium of melatonin and H(2)O(2) was sustained for roughly 1 h, at which time the content of H(2)O(2) decreased gradually over a several hour period, identified as the slow reaction phase. These observations suggest that melatonin, a ubiquitously distributed small nonenzymatic molecule, might serve to directly detoxify H(2)O(2) in living organisms. H(2)O(2) and melatonin are present in all subcellular compartments; thus, presumably, one important function of melatonin may be complementary in function to catalase and glutathione peroxidase in keeping intracellular H(2)O(2) concentrations at steady-state levels.  相似文献   

2.
Commercially available chromium supplements were tested for their DNA cleavage ability compared with synthetic chromium(III) complexes, including chromium(III) tris-picolinate [Cr(pic)3], basic chromium acetate [Cr3O(OAc)6]+, model complexes, and recently patented Cr-complexes for use in supplements or therapy. Four different supplements (P1-P4) were tested for their DNA cleaving activity in the presence and the absence of H2O2, dithiothreitol (DTT) or ascorbate. One supplement, P1, showed nicking of DNA in the absence of oxidant or reductant at 120 microM metal concentration. Different lot numbers of P1 were also tested for DNA cleavage activity with similar results. Commercial supplements containing Cr(pic)3 nicked DNA at 120 microM metal concentrations in the presence of 5 mM ascorbate or with excess hydrogen peroxide, analogous to reactions with synthetic Cr(pic)3 reported elsewhere. Another chromium (non-Cr(pic)3) supplement, P2, behaves in a comparable manner to simple Cr(III) salts in the DNA nicking assay. Chromium(III) malonate [Cr(mal)2] and chromium(III) acetate [Cr(OAc)] can nick DNA in the presence of ascorbate or hydrogen peroxide, respectively, only at higher metal concentrations. The Cr(III) complexes of histidine, succinate or N-acetyl-L-glutamate do not nick DNA to a significant degree.  相似文献   

3.
Autoxidation of 6-hydroxydopamine (6-OHDA) proceeds through a balanced network of: transition metal ions, superoxide, hydrogen peroxide, hydroxyl radicals, and other species. The contribution of each to the reaction mechanism varies dramatically depending upon which scavengers are present. The contribution of each propagating intermediate increases when the involvement of others is diminished. Thus, superoxide (which is relatively unimportant when metal ions can participate) dominates the reaction when transition metal ions are bound (especially at higher pH), and it becomes essential in the simultaneous presence of catalase plus chelators. Transition metal ions participate more if superoxide is excluded; hydrogen peroxide becomes more important if both .O2- and metal ions are excluded; and hydroxyl radicals contribute more to the reaction mechanism if both H2O2 and .O2- are excluded. Superoxide dismutase inhibited strongly, by two distinct mechanisms: a high affinity mechanism (less than 13% inhibition) at catalytically effective concentrations, and a low affinity mechanism (almost complete inhibition at the highest concentrations) which depends upon both metal binding and catalytic actions. In the presence of DETAPAC catalytic concentrations of superoxide dismutase inhibited by over 98%. Conversely, metal chelating agents inhibited strongly in the presence of superoxide dismutase. When present alone they stimulated (like EDTA), inhibited (like desferrioxamine), or had little effect (like DETAPAC). Catalase which stimulated slightly but consistently (less than 5%) when added alone, inhibited 100% in the presence of superoxide dismutase + DETAPAC. However, in the absence of DETAPAC, catalase decreased inhibition by superoxide dismutase, yielding a 100% increase in reaction rate. Hydroxyl scavengers (formate, mannitol or glucose) alone produced little or no (less than 10%) inhibition, but inhibited by 30% in the presence of catalase + superoxide dismutase. Paradoxically, they stimulated the reaction in the presence of catalase + superoxide dismutase + DETAPAC.  相似文献   

4.
Methacrylate monomers used in dentistry have been shown to induce DNA double strand breaks (DSBs), one of the most serious DNA damage. In the present work we show that a model dental adhesive consisting of 45% 2-hydroxyethyl methacrylate (HEMA) and 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) at concentrations up to 0.25 mM Bis-GMA induced oxidative DNA in cultured primary human gingival fibroblasts (HGFs) as evaluated by the comet assay and probed with human 8-hydroxyguanine DNA-glycosylase 1. HEMA/Bis-GMA induced DSBs in HGFs as assessed by the neutral comet assay and phosphorylation of the H2AX histone and sodium ascorbate or melatonin (5-methoxy-N-acetyltryptamine) both at 50 μM reduced the DSBs, they also inhibited apoptosis induced by HEMA/Bis-GMA. The adhesive slowed the kinetics of the repair of DNA damage induced by hydrogen peroxide in HGFs, while sodium ascorbate or melatonin improved the efficacy of H(2)O(2)-induced damage in the presence of the methacrylates. The adhesive induced a rise in the G2/M cell population, accompanied by a reduction in the S cell population and an increase in G0/G1 cell population. Sodium ascorbate or melatonin elevated the S population and reduced the G2/M population. In conclusion, HEMA/Bis-GMA induce DSBs through, at least in part, oxidative mechanisms, and these compounds may interfere with DSBs repair. Vitamin C or melatonin may reduce the detrimental effects induced by methacrylates applied in dentistry.  相似文献   

5.
In previous studies, a strong synergism between low concentrations of hydrogen peroxide and nitric oxide in the inhibition of agonist-induced platelet aggregation has been established and may be due to enhanced formation of cyclic GMP. In this investigation, hydrogen peroxide and NO had no effect on the activity of pure soluble guanylyl cyclase or its activity in platelet lysates and cytosol. H(2)O(2) was found to increase the phosphorylation of vasodilator-stimulated phosphoprotein (VASP), increasing the amount of the 50-kDa form that results from phosphorylation at serine(157). This occurs both in the presence and in the absence of low concentrations of NO, even at submicromolar concentrations of the peroxide, which alone was not inhibitory to platelets. These actions of H(2)O(2) were inhibited to a large extent by an inhibitor of cyclic AMP-dependent protein kinase, even though H(2)O(2) did not increase cyclic AMP. This inhibitor reversed the inhibition of platelets induced by combinations of NO and H(2)O(2) at low concentrations. The results suggest that the action on VASP may be one site of action of H(2)O(2) but that this event alone does not lead to inhibition of platelets; another unspecified action of NO is required to complete the events required for inhibition.  相似文献   

6.
The mechanism of xanthine oxidase (XO) inactivation by hydrogen peroxide (H2O2) and its biologic significance are unclear. We found that addition of increasing concentrations of H2O2 progressively decreased xanthine oxidase activity in the presence but not the absence of xanthine in vitro. Inactivation of XO by H2O2 was also enhanced by anaerobic reduction of XO by xanthine. Inactivation of XO by H2O2 was accompanied by production of hydroxyl radical (.OH), measured as formation of formaldehyde from dimethylsulfoxide (DMSO). In contrast, addition of H2O2 to deflavo XO did not produce .OH. Inactivation of XO by H2O2 was decreased by simultaneous addition of the .OH scavenger, DMSO. However, inactivation of XO by H2O2 and formation of .OH were not decreased following addition of the metal chelator. DETAPAC, and/or the O2 scavenger, superoxide dismutase. The results suggest that inactivation of XO by H2O2 occurs by production of .OH following direct reduction of H2O2 by XO at the flavin site.  相似文献   

7.
Studies of oxidative stress have classically been performed by analyzing specific, single antioxidants. In this study, susceptibility to oxidative stress in the human keratinocyte cell line NCTC2544 exposed to hydrogen peroxide (H2O2) was measured by the TOSC (total oxyradical scavenging capacity) assay, which discriminates between the antioxidant capacity toward peroxyl radicals and hydroxyl radical. The generation of H2O2-induced DNA damage, total antioxidant capacity and levels of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase, glutathione peroxidase) were studied. Exposure to H2O2-induced DNA damage that was gradually restored while a significant reduction in cellular TOSC values was obtained independently of stressor concentrations and the degree of DNA repair. Whereas TOSC values and cell resistance to H2O2 showed a good relationship, the extent of DNA damage is independent from cellular total antioxidant capacity. Indeed, maximum DNA damage and cell mortality were observed in the first 4 h, whereas TOSC remained persistently low until 48 h. Catalase levels were significantly lower in exposed cells after 24 and 48 h. Keratinocytes exposed after 48 h to a second H2O2 treatment exhibited massive cell death. A possible linkage was observed between TOSC values and NCTC2544 resistance to H2O2 challenge. The TOSC assay appears to be a useful tool for evaluating cellular resistance to oxidative stress.  相似文献   

8.
9.
Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from approximately 10(7) to approximately 10(2) CFU/ml in a 2-h preincubation at 30 degrees C of normal-gravity wheat mash at approximately 21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at approximately 10(7) CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at approximately 10(7) CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30 degrees C whether the bactericidal agent was added as H(2)O(2) or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H(2)O(2)) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H(2)O(2). H(2)O(2)-resistant mutants were not expected or found when lethal levels of H(2)O(2) or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast.  相似文献   

10.
The presence of hydrogen peroxide, at levels sometimes exceeding 100 microM, in human urine samples was established by three different assay methods: 2-oxoglutarate decarboxylation and the ferrous oxidation-xylenol orange (FOX) assay and an oxygen electrode. Detected levels of H(2)O(2) were decreased by addition of superoxide dismutase. We conclude that urine contains autooxidizable molecules that, upon exposure to 21% O(2), undergo rapid superoxide-dependent autooxidation reactions to generate H(2)O(2). The exposure of human tissues to hydrogen peroxide may be greater than is commonly supposed, which has implications in relation to the proposed role of this species in cell signaling.  相似文献   

11.
S Roth  W Dr?ge 《Cellular immunology》1987,108(2):417-424
Activated macrophages are known to release a variety of immunoregulatory substances including the low-molecular-weight substances hydrogen peroxide and lactate. We report here that lactate but not hydrogen peroxide is capable of supporting a substantial production of T-cell growth factor (TCGF) in cultures of accessory cell-depleted splenic T-cell populations after stimulation with concanavalin A. Hydrogen peroxide and its biosynthetic precursor superoxide anion (O2-) mediate, however, a strong augmentation of the TCGF production by accessory cell-depleted T-cell populations in the presence of lactate. Lactate inhibits the incorporation of [3H]thymidine in short-term cultures (18-26 hr) of accessory cell-depleted T cells. This confirms the rule that (optimal) production of T-cell growth factor requires a growth inhibitory signal. Concentrations of hydrogen peroxide which augment TCGF production most effectively (i.e., 1 X 10(-5) M) do not inhibit the incorporation of [3H]thymidine; and higher concentrations (3 X 10(-5)-1 X 10(-4) M) of hydrogen peroxide inhibit both the production of TCGF and the incorporation of [3H]thymidine. In agreement with the augmenting effect of hydrogen peroxide on TCGF production, it was observed that the proliferative response in mixed lymphocyte cultures is suppressed by catalase and augmented by 1 X 10(-5) M H2O2. Proliferative and cytotoxic responses in mixed lymphocyte cultures with an external source of interleukin 2 (IL-2) in contrast, are not augmented by 1 X 10(-5) M H2O2. The relatively high concentration of 1 X 10(-4) M hydrogen peroxide was found to inhibit the proliferative responses in mixed lymphocyte cultures with or without external IL-2 but not the cytotoxic response in the presence of IL-2. This indicates that CTL precursor cells may be relatively resistant against H2O2.  相似文献   

12.
The ability of pharmacologic doses of PGE2 to alter the release of superoxide (O2-) and hydrogen peroxide (H2O2) from elicited peritoneal macrophages (M theta) was studied. Twice-daily administration of 200 or 100 micrograms of PGE2 to mice during accumulation of peritoneal M theta resulted in a significant reduction in M theta recovery and in the triggered release of H2O2, but not O2-. Cultivation of elicited M theta from normal mice with concentrations of PGE2 in excess of 10(-7) M for 24-48 h resulted in a significant reduction in the triggered release of H2O2, but not O2-. Cultivation for shorter periods of time or with lower concentrations of PGE2 failed to alter H2O2 release. This effect of PGE2 was reproduced by the phosphodiesterase inhibitor theophylline. The ability of PGE2 to inhibit H2O2 release in the presence of normal production of O2- was not prevented by the addition of superoxide dismutase. Cultivation of peritoneal M theta with 10(-5) M PGE2 for 48 h failed to increase intracellular catalase, although increased H2O2 scavenger activity was demonstrated. The inhibition of extracellular release of H2O2, but not O2-, by pharmacologic doses of PGE2 may be one mechanism for the anti-inflammatory action of this compound.  相似文献   

13.
In the present study, we addressed the interactions among ultrasound, microbubbles, and living cells as well as consequent arising bioeffects. We specifically investigated whether hydrogen peroxide (H(2)O(2)) is involved in transient permeabilization of cell membranes in vitro after ultrasound exposure at low diagnostic power, in the presence of stable oscillating microbubbles, by measuring the generation of H(2)O(2) and Ca(2+) influx. Ultrasound, in the absence or presence of SonoVue microbubbles, was applied to H9c2 cells at 1.8 MHz with a mechanical index (MI) of 0.1 or 0.5 during 10 s. This was repeated every minute, for a total of five times. The production of H(2)O(2) was measured intracellularly with CM-H(2)DCFDA. Cell membrane permeability was assessed by measuring real-time changes in intracellular Ca(2+) concentration with fluo-4 using live-cell fluorescence microscopy. Ultrasound, in the presence of microbubbles, caused a significant increase in intracellular H(2)O(2) at MI 0.1 of 50% and MI 0.5 of 110% compared with control (P < 0.001). Furthermore, we found increases in intracellular Ca(2+) levels at both MI 0.1 and MI 0.5 in the presence of microbubbles, which was not detected in the absence of extracellular Ca(2+). In addition, in the presence of catalase, Ca(2+) influx immediately following ultrasound exposure was completely blocked at MI 0.1 (P < 0.01) and reduced by 50% at MI 0.5 (P < 0.001). Finally, cell viability was not significantly affected, not even 24 h later. These results implicate a role for H(2)O(2) in transient permeabilization of cell membranes induced by ultrasound-exposed microbubbles.  相似文献   

14.
Copper, zinc-superoxide dismutase (CuZn-SOD) is a cytosolic, antioxidant enzyme that scavenges potentially damaging superoxide radical (()O(2)(-)). Under the proper conditions, CuZn-SOD also catalyzes the oxidation and reduction of certain small molecules. Here, we demonstrate that increased exposure to hydrogen peroxide (H(2)O(2)), a by-product of the ()O(2)(-) scavenging reaction, dramatically increases the ability of CuZn-SOD to oxidize melatonin and reduce S-nitrosoglutathione (GSNO). After a 15min in vitro incubation with CuZn-SOD and 1mM H(2)O(2), 76% of the melatonin was oxidized, compared to 52% with 0.25mM H(2)O(2), and just 9% without H(2)O(2). Pre-incubation with 1mM H(2)O(2) resulted in a 100% increase in the rate of GSNO breakdown by CuZn-SOD in the presence of glutathione (GSH) compared to untreated CuZn-SOD. Collectively, these data suggest that even small increases in intracellular H(2)O(2) levels may result in the oxidation and/or reduction of small molecules critical for proper cellular function.  相似文献   

15.
The growth of bacteria of the genera Pseudomonas and Rhodococcus in the presence of hydrogen peroxide as the sole source of oxygen was studied. The toxic effect of H2O2 in the concentration range of 100-200 microg/ml was shown to extend the lag phase by 2 to 3 days. Apart from the peroxide toxicity, the bacterial growth was inhibited by the toxic effect of dissolved oxygen in concentrations over 100 microg O2/ml; in the presence of a liquid hydrocarbon phase, this effect was alleviated. Under decreased partial pressure of oxygen in the presence of hydrocarbons (12-15 vol %), the culture growth was initiated at high initial concentrations of H2O2 (300 microg/ml). When hydrogen peroxide concentrations exceeded 320 microg/ml, no growth occurred, no matter how much hydrocarbon was added.  相似文献   

16.
17.
Rat granulosa cells (GCs) were treated with human chorionic gonadotropin (hCG), 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), forskolin, phorbol 12-myristate 13-acetate (PMA), A23187 or pregnenolone in the absence or presence of hydrogen peroxide (H(2)O(2)). Different doses of trilostane were applied to GCs treated with steroidogenic precursors, that is, 25-hydroxy-cholesterol (25-OH-C) in the absence or presence of H(2)O(2). Results showed that all of the chemicals stimulated the progesterone (PG) release from rat GCs, but the stimulatory effects were inhibited by H(2)O(2) dose-dependently. 25-OH-C stimulated the PG release, which was inhibited by H(2)O(2) in the presence of trilostane. H(2)O(2) attenuated steroidogenic acute regulatory (StAR) protein expression, but did not alter the expression of cytochrome P450 side chain cleavage (P450scc) in Western blotting. This study indicated that H(2)O(2) inhibited PG production by GCs via cAMP pathway, protein kinase C (PKC) and the activities of intracellular calcium, P450scc and StAR protein.  相似文献   

18.
Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.  相似文献   

19.
Huang GL  Zhang G  Gao Y  Zhu JW 《生理学报》2002,54(4):349-353
应用高香草酸荧光分析技术及NADH-高铁氰化钾还原酶法,对正常和Graves病甲状腺过氧化氢(H2O2)和NADH-细胞色素b5还原酶(b5R)进行测定,发现Graves病甲状腺b5R活性和H2O2水平均明显高于正常,而H2O2酶活性在Graves病和正常甲状腺间无显著差异。加b5R抑制剂对氯汞苯甲酸抑制b5R活性,Graves病和正常甲状腺b5R活性降低近85%,同时H2O2降低近50%,蛋白结合碘形成减少近52%。b5R活性和H2O2水平两者呈显著正相关关系。以上结果表明,b5R参与甲状腺内H2O2的生物合成,是甲状腺内产生H2O2的重要酶系。  相似文献   

20.
目的 研究银杏叶提取物(EGb761)对H2O2所致星形胶质细胞氧化损伤的保护作用。方法 用不同浓度的EGb761预处理细胞,再加入H2O2,通过噻唑蓝(MTT)实验、线粒体跨膜电位(△ψm)及细胞色素C释放实验、DNA损伤实验及半胱氨酰天冬氨酸特异性蛋白酶-3(Caspase-3)活性测定,观察EGb761对细胞存活率、线粒体膜通透性、DNA氧化损伤及Caspase-3活性的影响。结果 EGb761能明显降低Hz02对星形胶质细胞的氧化损伤,提高细胞的存活率;维持线粒体膜的完整性,抑制跨膜电位的耗散和细胞色素C的释放;抑制Caspase-3的活化和DNA的降解。结论 EGb761具有清除活性氧,减轻H2O2所致星形胶质细胞的氧化损伤,对星形胶质细胞有保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号