首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Functions required for site-specific integration and excision of the Staphylococcus aureus serotype F virulence-converting phages φ13 and φ42 were localized and characterized. Like other temperate phages, integration of φ13 and φ42 sequences was found to require the product of an int gene located close to the phage attP site. Both int genes are almost identical, express proteins possessing characteristic features of the Int (integrase) family of recombinases, but share very little homology with previously described int genes, including those of the serotype B S. aureus phages L54a and φ11. Nevertheless, all four S. aureus phages share an almost identical short sequence located immediately 5′ to these distinct int genes, suggesting a common mechanism of int gene regulation. Upstream from these common sequences, the sequences of φ13 and φ42 are quite distinct from each other, and from the corresponding regions of φ11 and L54a which encode the Xis proteins that are required with Int to mediate site-specific excision of the latter phages. Surprisingly, φ13 and φ42 sequences encompassing the attP sites and int genes, but lacking either an adjacent or more distant phage excision protein gene, were sufficient to mediate site-specific excision of integrated phage DNA sequences.  相似文献   

3.
Summary Fragments of DNA of the temperate phage P2, generated by treatment with the restriction enzyme PstI, have been cloned into the plasmid pBR322. One such fragment, which has its endpoints within phage genes T and C, carries the structural P2 int gene as well as its promoter and the phage att site. When introduced into a suitable bacterial host, the cloned fragment mediates the integration and excision of int - mutants of P2 and recombination within the phage att site in mixed infection. All these activities are independent of the orientation of the fragment within the plasmid.When introduced into minicells, the fragment produces, in addition to the products of genes D and U, a protein of 35–37,000 daltons identified as the int protein. A study of the map location of two amber int mutants, together with the sizes of the polypeptides they produce, indicates that the P2 int gene is transcribed from right to left on the P2 map, i.e. starting near gene C and proceeding toward att.  相似文献   

4.
Survival of UV-irradiated phage λ is increased when the host is lysogenic for a homologous heteroimmune prophage such as λimm434 (prophage reactivation). Survival can also be increased by UV-irradiating slightly the non-lysogenic host (UV reactivation).Experiments on prophage reactivation were aimed at evaluating, in this recombination process, the respective roles of phage and bacterial genes as well as that of the extent of homology between phage and prophage.To test whether UV reactivation was dependent upon recombination between the UV-damaged phage and cellular DNAs, lysogenic host cells were employed. Such hosts had thus as much DNA homologous to the infecting phage as can be attained. Therefore, if recombination between phage and host DNAs was involved in this repair process, it could clearly be evidenced.By using unexposed or UV-exposed host cells of the same type, prophage reactivation and UV reactivation could be compared in the same genetic background.The following results were obtained: (1) Prophage reactivation is strongly decreased in a host carrying recA mutations but quite unaffected by mutation lex-I known to prevent UV reactivation; (2) In the absence of the recA+ function, the red+ but not the int+ function can substitute for recA+ to produce prophage reactivation, although less efficiently; (3) Prophage reactivation is dependent upon the number of prophages in the cell and upon their degree of homology to the infecting phage. The presence in a recA host of two prophages either in cis (on the chromosome) or in trans (on the chromosome and on an episome) increases the efficiency of prophage reactivation; (4) Upon prophage reactivation there is a high rate of recombination between phage and prophage but no phage mutagenesis; (5) The rate of recombination between phage and prophage decreases if the host has been UV-irradiated whereas the overall efficiency of repair is increased. Under these conditions UV reactivation of the phage occurs as in a non-lysogen, as attested by the high rate of mutagenesis of the restored phage.These results demonstrate that UV reactivation is certainty not dependent upon recombination between two pre-existing DNA duplexes. The hypothesis is offered that UV reactivation involves a repair mechanism different from excision and recombination repair processes.  相似文献   

5.
Summary From a double lysogen for 80dlac type II (Beckwith and Signer, 1966) and 80, we isolated a plaque-forming lac-transducing coliphage 80plac after selecting a strain with a suitable deletion in the 80 prophage. The lac region of the phage is i + o + z + y + a - and supposed to be located between genes 15 (N) and imm (CI). The phage showed feckless phenotype indicating deletion of genes of the red system. The phage is also deleted for int or att function, and integrates exclusively at the host lac region, largely dependent on the host rec system. Excision of the prophage upon UV-irradiation or by mating the male lysogen with a non-lysogenic female was efficient and largely dependent on the host rec system. But a considerable amount of rec-independent excision was observed at least in the case of zygotic induction, which was not likely to be caused by int-xis, red or ter system of the phage. 80plac/o e phage was also isolated by incorporation of o e1 mutation from strain 2000o e.  相似文献   

6.
The bacteriophage Mu is known to insert its DNA more or less randomly within the Escherichia coli chromosome, as do transposable elements, but unlike the latter, precise excision of the prophage, thereby restoring the original sequence, is not observed with wild-type Mu, although it has been reported with certain defective mutants. We show here that the mutant prophage Mu gem2ts can excise precisely from at least three separate loci —malT, Iac and thyA (selected as Mal+, Lac+ and Thy+, respectively). This excision occurs under permissive conditions for phage development, is observed in fully immune (c+) lysogens, and is independent of RecA and of Mu transposase. Mu gemts2 excision is invariably accompanied by reintegration of a Mu gem2ts prophage elsewhere in the chromosome, in the case of Mal+ revertants, this prophage is systematically located at 94min on the E. coli chromosome. Mu gem2ts excision therefore sheds some light on the long-standing paradox of the lack of precise Mu excisio.  相似文献   

7.
H I Miller  M A Mozola  D I Friedman 《Cell》1980,20(3):721-729
The mutation int-h3 maps in the int gene of coliphage λ and results in the synthesis of an integrase with enhanced activity, which is manifested by an ability to support λ site-specific recombination relatively efficiently under conditions where the wild-type integrase functions inefficiently. The level of site-specific recombination seen in the presence of the int+ integrase in himA? hosts is greatly reduced, as measured by lysogen formation, intramolecular site-specific integration and excision, and excision of a cryptic λ prophage. In contrast, the int-h3 integrase shows relatively high levels of activities under these conditions. Int-h3 is also more active in other host mutants (himB and hip) that reduce λ site-specific recombination. In the absence of the normal attB site, the frequency of lysogen formation (at secondary sites) by λ int+ is reduced 200 fold. Although λ int-h3 will integrate preferentially at the attB site if it is present, the mutant phage forms lysogens at a high frequency in attB-deleted hosts. λ int-h3 requires himA function for integration at secondary sites. The fact that the int-h3 integrase uses the same att sites as well as the same host functions as the int+ integrase suggests that the mutation results in a quantitative rather than a qualitative change in integrase activity; that is, the int-h3 integrase is more active. The mutant integrase supports site-specific recombination with att sites that carry the att24 mutation. We propose that the int-h3 integrase is endowed with an enhanced ability to recognize att sequences, including some that are not effectively recognized by wild-type integrase.  相似文献   

8.
Summary The changes induced by bacteriophage P22 in the cellular transport process(es) of the host Salmonella typhimurium (Taneja et al., 1975; Khandekar et al., 1975; Bandyopadhyay and Chakravorty, 1976) involve interactions between the superinfection exclusion system of the resident prophage and the C immunity region of the superinfecting phage. The sieA gene of the prophage interferes with the changes in the cellular transport process induced by the superinfecting phage. However, if the superinfecting phage carries active C 1 and C 2 genes of the superinfecting phage seem to be expressed in the sie A+ lysogen.  相似文献   

9.
10.
Summary A deletion of phage P2, del6 (L.E. Bertani, 1980), thought to remove the structural gene int, and a deletion/substitution, vir94, thought to remove genes int, C and cox, were mapped by electron microscopy, using the heteroduplex technique.Four independent deletion/substitution mutations, all affecting the regulatory region of P2, were compared in all possible combinations with the same technique: two showed sequence homology in their substitution DNA. The results confirm the model proposed for the origin of these mutants, analogous to that for the origin of transducing variants in phage , but suggest in first approximation that the exchange between the P2 DNA and the chromosome of the host bacterium may occur at several different bacterial sites.A map of the regulatory region of P2, based on all data available from the study of deletions and insertions, is presented.  相似文献   

11.
In the unicellular green alga, Chlamydomonas reinhardtii, cytochrome oxidase subunit 2 (cox2) and 3 (cox3) genes are missing from the mitochondrial genome. We isolated and sequenced a BAC clone that carries the whole cox3 gene and its corresponding cDNA. Almost the entire cox2 gene and its cDNA were also determined. Comparison of the genomic and the corresponding cDNA sequences revealed that the cox3 gene contains as many as nine spliceosomal introns and that cox2 bears six introns. Putative mitochondria targeting signals were predicted at each N terminal of the cox genes. These spliceosomal introns were typical GT–AG-type introns, which are very common not only in Chlamydomonas nuclear genes but also in diverse eukaryotic taxa. We found no particular distinguishing features in the cox introns. Comparative analysis of these genes with the various mitochondrial genes showed that 8 of the 15 introns were interrupting the conserved mature protein coding segments, while the other 7 introns were located in the N-terminal target peptide regions. Phylogenetic analysis of the evolutionary position of C. reinhardtii in Chlorophyta was carried out and the existence of the cox2 and cox3 genes in the mitochondrial genome was superimposed in the tree. This analysis clearly shows that these cox genes were relocated during the evolution of Chlorophyceae. It is apparent that long before the estimated period of relocation of these mitochondrial genes, the cytosol had lost the splicing ability for group II introns. Therefore, at least eight introns located in the mature protein coding region cannot be the direct descendant of group II introns. Here, we conclude that the presence of these introns is due to the invasion of spliceosomal introns, which occurred during the evolution of Chlorophyceae. This finding provides concrete evidence supporting the ``intron-late' model, which rests largely on the mobility of spliceosomal introns. Received: 22 August 2000 / Accepted: 28 February 2001  相似文献   

12.
Almost all bacterial genomes harbour prophages, yet it remains unknown why prophages integrate into tRNA-related genes. Approximately 1/3 of Shewanella isolates harbour a prophage at the tmRNA (ssrA) gene. Here, we discovered a P2-family prophage integrated at the 3′-end of ssrA in the deep-sea bacterium S. putrefaciens. We found that ~0.1% of host cells are lysed to release P2 constitutively during host growth. P2 phage production is induced by a prophage-encoded Rep protein and its excision is induced by the Cox protein. We also found that P2 genome excision leads to the disruption of wobble base pairing of SsrA due to site-specific recombination, thus disrupting the trans-translation function of SsrA. We further demonstrated that P2 excision greatly hinders growth in seawater medium and inhibits biofilm formation. Complementation with a functional SsrA in the P2-excised strain completely restores the growth defects in seawater medium and partially restores biofilm formation. Additionally, we found that products of the P2 genes also increase biofilm formation. Taken together, this study illustrates a symbiotic relationship between P2 and its marine host, thus providing multiple benefits for both sides when a phage is integrated but suffers from reduced fitness when the prophage is excised.  相似文献   

13.
14.
A sex factor, F′450(λ), which can be isolated as a covalent circle of DNA, has been examined by alkaline sucrose gradient centrifugation of lysates of induced cells in order to study λ prophage excision. Thermal derepression of the prophage results in loss of F′450(λ) covalent circles, which is mediated by systems involved in excision and initiation of replication. When protocols known to result in prophage curing are used, the F′450(λ) is converted to an F′450 and a λ covalent circle; in normal excision leading to phage development, F′450 covalent circles are not found. We have shown that: (1) excision usually occurs later than initiation of DNA replication of the prophage so that the excised prophage is usually already replicated or in the act of replication; (2) the DNA growing points of the prophage leave the prophage and enter the bacterial DNA; (3) the int and xis genes are involved in the earliest detectable stage of the excision process, i.e. breakage of the DNA at the attachment region; (4) the xis gene product is involved in a weak non-specific nuclease activity in addition to its highly specific activity in excision; and (5) the excision system fails to attack a single attachment site.  相似文献   

15.
Summary A nonlysogenic cell has twenty fold higher (26% versus 1.3%) probability to survive phage infection than entry of the same genome via conjugation (prophage infection). When the entering genome bears a cIII- mutation, this difference increases to one hundred fold (6% versus 0.06%). A lysogenic im- cell harbouring a defective prophage able to synthetize anti-immunity (product of gene tof) has ten fold higher probability to survive prophage infection than phage infection (20% versus 2%). Here, cIII- mutation does not affect the survival. When the cell is simultaneously infected with the phage and prophage, the decision of the phage whether to enter the lytic cycle (in im- cells) or not (in nonlysogens) is always epistatic to that of the prophage.  相似文献   

16.
The Shiga-like toxin 1-converting bacteriophage H-19B was recently shown to carry the structural genes for the toxin and was shown to have DNA sequence homology with phage lambda. We present evidence that the linear genome of bacteriophage H-19B has cohesive termini which become covalently associated during prophage integration. Integration occurs through a site on a 4-kilobase-pair EcoRI fragment located near the center of the bacteriophage chromosome. The relationship between bacteriophages H-19B and lambda was examined by Southern hybridization. Homologous regions were mapped on the respective chromosomes which corresponded to the regions of the J gene, the int-xis area, and the O and P genes of phage lambda. The H-19B tox genes were mapped to the right of the O and P gene homology, which was far away from the phage attachment site. We concluded that H-19B is a lambdoid bacteriophage. Unlike other toxin-converting bacteriophages, the toxin genes were not located adjacent to the phage attachment site. It appeared that the Shiga-like toxin 1 genes were not picked up by a simple imprecise prophage excision. H-19B could, however, have acquired chromosomally located toxin genes by a series of events involving deletion and duplication followed by aberrant excision.  相似文献   

17.
Summary Mutants of phage P2 unable by themselves to be integrated as prophages have been isolated. These mutants (int) are complemented by the wild type allele and may then yield stable lysogenic strains carrying an int prophage at location I in Escherichia coli C. These lysogens produce either no phage or little phage, depending on the int mutant used. All int mutants isolated appear to belong to a single complementation group.Exceptional lysogens carrying two or more int prophages may be obtained: they may produce spontaneously even more phage than normal lysogens, and they segregate out defective, singly lysogenic clones at low frequency. These exceptional lysogens carry both prophages in location I, presumably in tandem.Strains carrying two or more int prophages but defective in phage production were also isolated. One of these carries its prophages at two different, not closely linked, chromosomal locations.  相似文献   

18.
Summary In bacteriophage P1 an amber mutation in a new gene, bof, has been isolated. The bof-1 phage mutant exhibits a pleiotropic phenotype; bof product is non-essential, and acts as a positive modulator. In P1 bac-1 mutants, in which a dnaB analog product, ban, is expressed constitutively, the bof product activates ban expression both in the prophage state and in lytic growth: P1 bof bac prophages have a reduced ban activity and in lytic growth P1 bof bac phages show a lower ban activity than P1 wild type. This effect on ban activity is observed specifically in P1 bac-1 mutants; it is not mediated by the cl repressor of the lytic functions (repressor of the ban operon) since this effect occurs even if the phage carries a heat sensitive c1 repressor. Thus we concluded that the bac mutation put the ban operon under an abnormal, unknown control, modulated by the bof product. P1 bof lysogens show an increased immunity to superinfecting P1 phage and are affected in their inducibility properties; in the presence of the altered c1-100 repressor, bof product is required for maintenance of lysogeny, as shown by the induction of P1 c1-100 bof-1 lysogens at 30°. P1 bof superinfecting phage can be established together with a resident P1 bof prophage in a recA host, unlike P1 wild type which cannot form double lysogens. P1 bof double lysogens are unstable and segregate one or the other prophage. P1 Cm bof and P1 Km bof lysogens show higher levels of antibiotic resistance than the corresponding bof + lysogens. The bof gene has been mapped, in an interval defined by P1 prophage deletion end points, far from both ban and c1. All bof phenotypes are reversed by single mutations.  相似文献   

19.
A P22 specialized transducing phage has been constructed which carries the structural gene for aspartate transcarbamylase (ATCase). This gene (pyrB) was first brought close to the P22 attachment site by fusing an F' pyrB+ episome to an F' prolac episome which carries a P22 prophage attachment site. A prophage was added to these fused F' episomes and the lysogen was UV-induced. The specialized transducing phage was isolated from the resulting lysate. The phage also carries argI, the structure gene for ornithine transcarbamylase.  相似文献   

20.
Summary P22 mutants defective in the early gene 24 are complemented by phage L in mixed infection. P22 12 - and P22 23 - mutants are not complemented by phage L. Gene function 24 of an L prophage is turned on by a superinfecting P22 24 - mutant and complements the missing function of the defective P22 phage. Since this transactivation of prophage gene 24 depends on a functional gene ant in the superinfecting P22 mutant, it indicates derepression for leftward directed gene expression in prophage L. On the contrary neither the rightward directed expression of gene 12 nor of gene 23 in prophage L can be turned on by superinfecting P22 24 - 12 - or P22 24 - 23 - mutants (and also not by P22 12 - and P22 23 -) to a degree sufficient for complementation of simultaneously superinfecting L virB 12 - or L virB 23 - mutants. The failure to detect release of repression for rightward directed gene expression of prophage L corresponds to the earlier observation (Prell, 1975) that P22 superinfecting L lysogens cannot release replication inhibition for simultaneously infecting phage L. The results are discussed with respect to the mechanism underlying the different action of P22 antirepressor in L and in P22 lysogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号