首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenomenon of gradual telomere shortening has become a paradigm for how we understand the biology of aging and cancer. Cell proliferation is accompanied by cumulative telomere loss, and the aged cell either senesces, dies or transforms toward cancer. This transformation requires the activation of telomere elongation mechanisms in order to restore telomere length such that cell death or senescence programs are not induced. Most of the time, this occurs through telomerase reactivation. In other rare cases, the Alternative lengthening of telomeres (ALT) pathway hijacks DNA recombination‐associated mechanisms to hyperextend telomeres, often to more than 50 kb. Why telomere length is restricted and what sets their maximal length has been a long‐standing puzzle in cell biology. Two recent studies published in this issue of EMBO Reports [1] and recently in Science [2] sought to address this important question. Both built on omics approaches that identified ZBTB48 as a potential telomere‐associated protein and reveal it to be a critical regulator of telomere length homeostasis by the telomere trimming mechanism. These discoveries provide fundamental insights for our understanding of telomere trimming and how it impacts telomere integrity in stem and cancer cells.  相似文献   

2.
Telomeres are specialized structures at the ends of eukaryotic chromosomes that are important for maintaining genome stability and integrity. Telomere dysfunction has been linked to aging and cancer development. In mammalian cells, extensive studies have been carried out to illustrate how core telomeric proteins assemble on telomeres to recruit the telomerase and additional factors for telomere maintenance and protection. In comparison, how changes in growth signaling pathways impact telomeres and telomere‐binding proteins remains largely unexplored. The phosphatidylinositol 3‐kinase (PI3‐K)/Akt (also known as PKB) pathway, one of the best characterized growth signaling cascades, regulates a variety of cellular function including cell proliferation, survival, metabolism, and DNA repair, and dysregulation of PI3‐K/Akt signaling has been linked to aging and diseases such as cancer and diabetes. In this study, we provide evidence that the Akt signaling pathway plays an important role in telomere protection. Akt inhibition either by chemical inhibitors or small interfering RNAs induced telomere dysfunction. Furthermore, we found that TPP1 could homodimerize through its OB‐fold, a process that was dependent on the Akt kinase. Telomere damage and reduced TPP1 dimerization as a result of Akt inhibition was also accompanied by diminished recruitment of TPP1 and POT1 to the telomeres. Our findings highlight a previously unknown link between Akt signaling and telomere protection.  相似文献   

3.
David Lydall 《The EMBO journal》2009,28(15):2174-2187
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell‐cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell‐cycle division are discussed.  相似文献   

4.
Identifying and understanding the processes that underlie the observed variation in lifespan within and among species remains one of the central areas of biological research. Questions directed at how, at what rate and why organisms grow old and die link disciplines such as evolutionary ecology to those of cell biology and gerontology. One process now thought to have a key role in ageing is the pattern of erosion of the protective ends of chromosomes, the telomeres. Here, we discuss what is currently known about the factors influencing telomere regulation, and how this relates to fundamental questions about the relationship between lifestyle and lifespan.  相似文献   

5.
Telomere length-variation in deletion strains of Saccharomyces cerevisiae was used to identify genes and pathways that regulate telomere length. We found 72 genes that when deleted confer short telomeres, and 80 genes that confer long telomeres relative to those of wild-type yeast. Among identified genes, 88 have not been previously implicated in telomere length control. Genes that regulate telomere length span a variety of functions that can be broadly separated into telomerase-dependent and telomerase-independent pathways. We also found 39 genes that have an important role in telomere maintenance or cell proliferation in the absence of telomerase, including genes that participate in deoxyribonucleotide biosynthesis, sister chromatid cohesion, and vacuolar protein sorting. Given the large number of loci identified, we investigated telomere lengths in 13 wild yeast strains and found substantial natural variation in telomere length among the isolates. Furthermore, we crossed a wild isolate to a laboratory strain and analyzed telomere length in 122 progeny. Genome-wide linkage analysis among these segregants revealed two loci that account for 30%–35% of telomere length-variation between the strains. These findings support a general model of telomere length-variation in outbred populations that results from polymorphisms at a large number of loci. Furthermore, our results laid the foundation for studying genetic determinants of telomere length-variation and their roles in human disease.  相似文献   

6.
The analysis of model systems has broadened our understanding of telomere-related aging processes. Telomerase-deficient mouse models have demonstrated that telomere dysfunction impairs tissue renewal capacity and shortens lifespan. Telomere shortening limits cell proliferation by activating checkpoints that induce replicative senescence or apoptosis. These checkpoints protect against an accumulation of genomically instable cells and cancer initiation. However, the induction of these checkpoints can also limit organ homeostasis, regeneration, and survival during aging and in the context of diseases. The decline in tissue regeneration in response to telomere shortening has been related to impairments in stem cell function. Telomere dysfunction impairs stem cell function by activation of cell-intrinsic checkpoints and by the induction of alterations in the micro- and macro-environment of stem cells. In this review, we discuss the current knowledge about the impact of telomere shortening on disease stages induced by replicative cell aging as indicated by studies on telomerase model systems.  相似文献   

7.
DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, although little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.  相似文献   

8.
The molecular mechanisms involved in mammalian aging and the consequent organ dysfunction/degeneration pathologies are not well understood. Studies of progeroid syndromes such as Werner Syndrome have advanced our understanding of how certain genetic pathways can influence the aging process on both cellular and molecular levels. In addition, improper maintenance of telomere length and the consequent cellular responses to dysfunctional telomeres have been proposed to promote replicative senescence that impact upon the onset of premature aging and cancer. Recent studies of the telomerase-Werner double null mouse link telomere dysfunction to accelerated aging and tumorigenesis in the setting of Werner deficiency. This mouse model thus provides a unique genetic platform to explore molecular mechanisms by which telomere dysfunction and loss of WRN gene function leads to the onset of premature aging and cancer.  相似文献   

9.
Cellular lifespan and senescence signaling in embryonic stem cells   总被引:8,自引:0,他引:8  
Miura T  Mattson MP  Rao MS 《Aging cell》2004,3(6):333-343
Most mammalian cells when placed in culture will undergo a limited number of cell divisions before entering an unresponsive non-proliferating state termed senescence. However, several pathways that are activated singly or in concert can allow cells to bypass senescence at least for limited periods. These include the telomerase pathway required to maintain telomere ends, the p53 and Rb pathways required to direct senescence in response to DNA damage, telomere shortening and mitogenic signals, and the insulin-like growth factor--Akt pathway that may regulate lifespan and cell proliferation. In this review, we summarize recent findings related to these pathways in embryonic stem (ES) cells and suggest that ES cells are immortal because these pathways are tightly regulated.  相似文献   

10.
Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts. Here, we apply models of acute telomere dysfunction to determine whether autophagy modulates the resulting genome instability and senescence responses. While telomere dysfunction rapidly induces autophagic flux in human fibroblast cell lines, inhibition of the autophagy pathway does not have a significant impact upon the transition to senescence, in contrast to what has previously been reported for oncogene-induced senescence. Our results suggest that this difference may be explained by disparities in the development of the senescence-associated secretory phenotype. We also show that chromosome fusions induced by telomere dysfunction are comparable in autophagy-proficient and autophagy-deficient cells. Altogether, our results highlight the complexity of the senescence-autophagy interface and indicate that autophagy induction is unlikely to play a significant role in telomere dysfunction-driven senescence and chromosome fusions.  相似文献   

11.
Cellular senescence, an irreversible proliferation arrest evoked by stresses such as oncogene activation, telomere dysfunction, or diverse genotoxic insults, has been implicated in tumor suppression and aging. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), nuclear DNA domains stained densely by DAPI and enriched for histone modifications including lysine9-trimethylated histone H3. While cellular senescence occurs also in premalignant human lesions, it is unclear how universal is SAHF formation among various cell types, under diverse stresses, and whether SAHF occur in vivo. Here, we report that human primary fibroblasts (BJ and MRC-5) and primary keratinocytes undergoing replicative senescence, or premature senescence induced by oncogenic H-Ras, diverse chemotherapeutics and bacterial cytolethal distending toxin, show differential capacity to form SAHF. Whereas all tested cell types formed SAHF in response to activated H-Ras, only MRC-5, but not BJ fibroblasts or keratinocytes, formed SAHF under senescence induced by etoposide, doxorubicin, hydroxyurea, bacterial intoxication or telomere attrition. In addition, DAPI-defined SAHF were detected on paraffin sections of Ras-transformed cultured fibroblasts, but not human lesions at various stages of tumorigenesis. Overall, our results indicate that unlike the widely present DNA damage response marker γH2AX, SAHF is not a common feature of cellular senescence. Whereas SAHF formation is shared by diverse cultured cell types under oncogenic stress, SAHF are cell-type-restricted under genotoxin-induced and replicative senescence. Furthermore, while the DNA/DAPI-defined SAHF formation in cultured cells parallels enhanced expression of p16ink4a, such ‘prototypic’ SAHF are not observed in tissues, including premalignant lesions, irrespective of enhanced p16ink4a and other features of cellular senescence.  相似文献   

12.
During liver regeneration, quiescent hepatocytes re-enter the cell cycle to proliferate and compensate for lost tissue. Multiple signals including hepatocyte growth factor, epidermal growth factor, tumor necrosis factor?α, interleukin-6, insulin and transforming growth factor?β orchestrate these responses and are integrated during the G(1) phase of the cell cycle. To investigate how these inputs influence DNA synthesis as a measure for proliferation, we established a large-scale integrated logical model connecting multiple signaling pathways and the cell cycle. We constructed our model based upon established literature knowledge, and successively improved and validated its structure using hepatocyte-specific literature as well as experimental DNA synthesis data. Model analyses showed that activation of the mitogen-activated protein kinase and phosphatidylinositol?3-kinase pathways was sufficient and necessary for triggering DNA synthesis. In addition, we identified key species in these pathways that mediate DNA replication. Our model predicted oncogenic mutations that were compared with the COSMIC database, and proposed intervention targets to block hepatocyte growth factor-induced DNA synthesis, which we validated experimentally. Our integrative approach demonstrates that, despite the complexity and size of the underlying interlaced network, logical modeling enables an integrative understanding of signaling-controlled proliferation at the cellular level, and thus can provide intervention strategies for distinct perturbation scenarios at various regulatory levels.  相似文献   

13.
Howell AS  Lew DJ 《Genetics》2012,190(1):51-77
Studies of the processes leading to the construction of a bud and its separation from the mother cell in Saccharomyces cerevisiae have provided foundational paradigms for the mechanisms of polarity establishment, cytoskeletal organization, and cytokinesis. Here we review our current understanding of how these morphogenetic events occur and how they are controlled by the cell-cycle-regulatory cyclin-CDK system. In addition, defects in morphogenesis provide signals that feed back on the cyclin-CDK system, and we review what is known regarding regulation of cell-cycle progression in response to such defects, primarily acting through the kinase Swe1p. The bidirectional communication between morphogenesis and the cell cycle is crucial for successful proliferation, and its study has illuminated many elegant and often unexpected regulatory mechanisms. Despite considerable progress, however, many of the most puzzling mysteries in this field remain to be resolved.  相似文献   

14.
端粒位于真核细胞线性染色体末端,正常的端粒长度与结构对于细胞基因组稳定的维持有重要作用.端粒DNA序列的高度重复性使其容易形成一些特殊的二级结构,相比染色体其他位置更难复制.结合在端粒上的Shelterin蛋白复合体由六个端粒结合蛋白组成,该复合体可以通过抑制端粒处异常DNA损伤修复途径的激活维持端粒的稳定.此外,近几...  相似文献   

15.
MOTIVATION: Linear chromosomes carry on both ends repetitive DNA sequences called telomere. In the conventional model of semi-conservative DNA replication, the 3'-end of a linear DNA strand cannot be fully replicated, resulting in a single-stranded 3' overhang at one end of the double-stranded DNA product. In this model, the length of the overhang is expected to be about the size of an RNA primer (about nine nucleotides for human cells). However, it has been found that the telomere overhangs in human cells can be as long as several hundred nucleotides. At present, the opinion regarding how such long overhangs are produced is controversial. RESULTS: In order to gain insight into the mechanism by which long telomere overhangs are produced, we derived a mathematical model that can perfectly describe the length distribution of telomere overhangs in several human cell strains. The model suggests that the production of telomere overhangs can be explained by three contributions corresponding to three regions on the G-rich telomere template strand, namely, the region occupied by the last primer, that missed out by this primer at its 5'-side and the 3'-terminus of the template strand that is inaccessible to primase. The model can also be used to simulate incomplete telomere replication.  相似文献   

16.
The shortening of telomeric repeats as a cell replicates has long been implicated as a determinant of cell viability. However, recent studies have indicated that it is not telomere length, but rather whether telomeres have bound a telomere-related protein, which in mammals is TTAGGG repeat binding factor-2 (TRF2), that determines whether a cell undergoes apoptosis (programmed cell death), enters senescence (a quiescent, non-replicative state), or continues to proliferate. When bound to a telomere, TRF2 allows a cell to recognize the telomere as the point where a chromosome ends rather than a break in DNA. When telomeres are not bound by TRF2, the cell can either immediately trigger senescence or apoptosis via the DNA damage response pathway, or indirectly trigger it by attempting to repair the chromosome, which results in chromosomal end joining. We model the ability of telomeres to bind TRF2 as a function of telomere length and apply the resulting binding probability to a model of cellular replication that assumes a homogeneous cell population. The model fits data from cultured human fibroblasts and human embryonic kidney cells for two free parameters well. We extract values for the percent of telomere loss at which cell proliferation ceases. We show, in agreement with previous experiments, that overexpression of TRF2 allows a cell to delay the senescence setpoint. We explore the effect of oxidative stress, which increases the rate of telomere loss, on cell viability and show that cells in the presence of oxidative stress have reduced lifespans. We also show that the addition of telomerase, an enzyme that maintains telomere length, is sufficient to result in cell immortality. We conclude that the increasing inability of TRF2 to bind telomeres as they shorten is a quantitatively reasonable model for a cause of either cellular apoptosis or senescence.  相似文献   

17.
In recent decades we have been given insight into the process that transforms a normal cell into a malignant cancer cell. It has been recognised that malignant transformation occurs through successive mutations in specific cellular genes, leading to the activation of oncogenes and inactivation of tumor suppressor genes. The further study of these genes has generated much of its excitement from the convergence of experiments addressing the genetic basis of cancer, together with cellular pathways that normally control important cellular regulatory programmes. In the present review the context in which oncogenes such as proliferation, cell death/apoptosis, differentiation and senescence will be described, as well as how these cellular programmes become deregulated in cancer due to mutations.  相似文献   

18.
Although telomeres are not recognized as double-strand breaks (DSBs), some DSB repair proteins are present at telomeres and are required for telomere maintenance. To learn more about the telomeric function of proteins from the homologous recombination (HR) and non-homologous end joining pathways (NHEJ), we have screened a panel of chicken DT40 knockout cell lines for changes in telomere structure. In contrast to what has been observed in Ku-deficient mice, we found that Ku70 disruption did not result in telomere–telomere fusions and had no effect on telomere length or the structure of the telomeric G-strand overhang. G-overhang length was increased by Rad51 disruption but unchanged by disruption of DNA-PKcs, Mre11, Rad52, Rad54, XRCC2 or XRCC3. The effect of Rad51 depletion was unexpected because gross alterations in telomere structure have not been detected in yeast HR mutants. Thus, our results indicate that Rad51 has a previously undiscovered function at vertebrate telomeres. They also indicate that Mre11 is not required to generate G-overhangs. Although Mre11 has been implicated in overhang generation, overhang structure had not previously been examined in Mre11-deficient cells. Overall our findings indicate that there are significant species-specific differences in the telomeric function of DSB repair proteins.  相似文献   

19.
Control of smooth muscle cell proliferation in vascular disease   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS: Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY: New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.  相似文献   

20.
The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号