首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Developing chloroplasts were isolated from the basal region of green barley ( Hordeum vulgare L. cv. Menuet) leaves and their ultrastructure and biochemical composition were compared to those of mature chloroplasts from the tip of the same leaves, using two methods of purification on sucrose and Percoll gradients.
When examined and compared to mature chloroplasts, the developing chloroplasts showed well-developed grana stacks, but these last organelles were 2-fold smaller and contained lower amounts of chlorohylls and polar lipids. Only traces of trans -3-hexadecenoic acid could be detected in phosphatidylglycerol of developing plastids. The protein content of these plastids was higher than in mature plastids and showed an increased proportion of polypeptides linked to P-700 chlorophyll α-protein. The photosynthetic activity of these plastids was about 2-fold lower and their photosystem 1/photosystem II ratio higher than in mature chloroplasts.  相似文献   

2.
Triple-barrelled microelectrodes measuring K(+) activity (a(K)), pH and membrane potential were used to make quantitative measurements of vacuolar and cytosolic a(K) in epidermal and mesophyll cells of barley plants grown in nutrient solution with 0 or 200 mM added NaCl. Measurements of a(K) were assigned to the cytosol or vacuole based on the pH measured. In epidermal cells, the salt treatment decreased a(K) in the vacuole from 224 to 47 mM and in the cytosol from 68 to 15 mM. In contrast, the equivalent changes in the mesophyll were from 235 to 150 mM (vacuole) and 79 to 64 mM (cytosol). Thus mechanisms exist to ameliorate the effects of salt on a(K) in compartments of mesophyll cells, presumably to minimize any deleterious consequences for photosynthesis. Thermodynamic calculations showed that K(+) is actively transported into the vacuole of both epidermal and mesophyll cells of salinized and non- salinized plants. Comparison of the values of a(K) in K(+)-replete, non-salinized leaf cells with those previously measured in root cells of plants grown under comparable conditions indicates that cytosolic a(K) is similar in cells of both organs, but vacuolar a(K) in leaf cells is approximately twice that in roots. This suggests differences in the regulation of vacuolar a(K), but not cytosolic a(K), in leaf and root cells.  相似文献   

3.
Kinetics of the dark relaxation of variable chlorophyll fluorescence, Fv, were studied after brief illumination of dark-adapted barley leaves in order to understand the rapid reversibility of pulse-induced fluorescence increases, which is observed even when fast linear electron transport to an external electron acceptor is not possible. Four kinetically distinct components were observed which reveal complexity in the oxidation of the reduced primary quinone acceptor of Photosystem II, QA : the slowest component accounted for 4–5% of maximal Fv and had a life-time of several seconds. It is suggested to represent a minor population of inactive Photosystem II centers. The other three components displayed first-order kinetics with half-time of 6–8 ms (`fast' component), 60–80 ms (`middle' component) and 650–680 ms (`slow' component). The fast component dominated Fv when methyl viologen or far-red light accelerated oxidation of plastohydroquinone. It shows rapid oxidation of QA during electron flow to plastoquinone commensurate with maximum linear electron flow through the electron transport chain. The other two components were observed under conditions of restricted electron flow and excessive reduction of electron carriers. Unexpectedly, the slow component, which is interpreted to reflect the recombination between QA and an intermediate on the oxidizing side of Photosystem II, saturated already at low irradiances of actinic light when plastoquinone was not yet strongly reduced suggesting that dark-adaptation of leaves results not only in the loss of activity of light-regulated enzymes of the carbon cycle but affects also electron flow from QA to plastoquinone. KCN poisoning or high temperature treatment of leaves produced a nonexponential pattern of slow Fv relaxation. This effect was largely (heat treatment) or even completely (KCN) abolished by far-red light. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The time course for the observation of intact chlorophyll-protein (CP) complexes during barley chloroplast development was measured by mild sodium dodecyl sulfate polyacrylamide gel electrophoresis. The procedure required extraction of thylakoid membranes with sodium bromide to remove extrinsic proteins. During the early stages of greening, the proteins extracted with sodium bromide included polypeptides from the cell nucleus that associate with developing thylakoid membranes during isolation and interfere with the separation of CP complexes by electrophoresis. Photosystem I CP complexes were observed before the photosystem II and light-harvesting CP complexes during the initial stages of barley chloroplast development. Photosystem I activity was observed before the photosystem I CP complex was detected whereas photosystem II activity coincided with the appearance of the CP complex associated with photosystem II. Throughout chloroplast development, the percentage of the total chlorophyll associated with photosystem I remained constant whereas the amount of chlorophyll associated with photosystem II and the light-harvesting complex increased. The CP composition of thylakoid membranes from the early stages of greening was difficult to quantitate because a large amount of chlorophyll was released from the CP complexes during detergent extraction. As chloroplast development proceeded, a decrease was observed in the amount of chlorophyll released from the CP complexes by detergent action. The decrease suggested that the CP complexes were stabilized during the later stages of development.Abbreviations Chl chlorophyll - CP chlorophyll-protein - CPI P700 chlorophyll-a protein complex of photosystem I - CPa electrophoretic band that contains the photosystem II reaction center complexes and a variable amount of the photosystem I light-harvesting complex - CP A/B the major light-harvesting complex associated with photosystem II - DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPC diphenyl carbazide - MV methyl viologen - PAR photosynthetically active radiation - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TEMED N,N,N,N-tetramethylethylenediamine - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601. Paper No. 9949 of the Journal Series of the North Carolina Agricultural Research Service, Raleight, NC 27695-7601.  相似文献   

5.
Chloroplasts isolated from elevated temperature treated 8-day-old continuous-white-light-grown wheat primary leaves lost the ability to photo-oxidize water. Also, the ability of ascorbate to donate electrons to photosystem II declined. However, a significant increase in reduced dichlorophenolindophenol-supported photosystem-I-mediated methylviologen photo-reduction activity was observed. The plants stressed at 45°C and 47°C were subsequently grown at 25°C and the partial photochemical activities were measured in chloroplasts isolated from the plants at 24-h intervals. The post stress alterations observed are (1) a significant restoration of water oxidation capacity in 45°C- and partial restoration in 47°C-treated leaves. Ascorbate-supported photochemical activities recovered more or less in similar fashion; (2) reversal of enhanced photosystem I activity in both 45°C- and 47°C-treated leaves. These results suggest that the restoration in water oxidation capacity is possible in 45°C-treated leaves and is limited by the severity of heat stress in 47°C-treated leaves. Restoration of water oxidation capacity vis-à-vis to the reversal of heat-enhanced photosystem I activity also indicates the existence of possible endogenous control for repair of alterations during the post stress.Abbreviations DCPIP-2,6 Dichlorophenol-indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FeCN Ferricyanide - Hepes N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid - PD Phenylene diimine - MV Methyl Viologen  相似文献   

6.
Light/dark modulation of the ribulose-5-phosphate kinase, NADP+-glyceraldehyde-3-phosphate dehydrogenase, and fructose- 1,6-bisphosphatase activity was measured in the developing primary leaf of barley (Hordeum vulgare L.) seedlings. Ribulose-5-phosphate kinase and NADP+ -glyceraldehyde-3-phosphate dehydrogenase were fully light activated even at the earliest developmental stage sampled. In contrast, light modulation of fructose- 1,6-bisphosphatase exhibited a complex response to leaf developmental status. Light stimulation of fructose- 1,6-bisphosphatase activity (measured at pH 8.0) increased progressively during leaf development. On the other hand, acid fructose- 1,6-bisphosphatase activity (measured at pH 6.0) was inhibited by light, and this light inhibition was greater in the base of the leaf than in the tip of the leaf.  相似文献   

7.
Primary leaf segments of 11-day-old seedlings of barley (Hordtumvulgare L. cv IB 65) were floated on distilled water in darknessat 25°C to induce senescence. This stress induced agingbrings significant loss in the total content of pigments, proteinsand nucleic acids (DNA, RNA) of the leaves and of chloroplastsisolated from the senescing leaves. Of the three macromolecularcomponents, RNA content of theisolated chloroplasts was foundmost susceptible to stress-induced aging. Loss of DCPIP Hill activity of the isolated chloroplasts couldbe correlated, in a general way, with the loss of pigments,proteins and nucleic acids of the leaves and chloroplasts isolatedfrom them. However, during the stress period, the ability ofdifferent exogenous electron donors like MnCl2 and diphenylcarbazide(DPC) to feed electrons to Photo System II (PS II) was foundto be different. MnCl2 supported photoreduction of DCPIP onlyup to the fourth day, whereas DPC sustained its ability to donateelectrons up to the seventh day of incubation of the leavesin darkness. These results suggest a sequential alteration ofthe sites in the electron-transport chain between H2O and PSII reaction centers of chloroplasts during dark-induced senescence.Kinetin not only prevented the loss of pigments and proteinsduring senescence, but also preserved the integrity of the electron-transportchain. (Received November 15, 1975; )  相似文献   

8.
Proteinase inhibitor (PI) accumulation has been described as a plant defense response against insects and pathogens. The induction of PIs is known to be regulated by endogenous chemical factors including phytohormones. We studied the induction of barley chymotrypsin and trypsin inhibitory activities by aphid infestation, mechanical wounding, abscisic acid (ABA) and jasmonic acid (JA). Wounding experiments led to a minimal accumulation of PI activity (16% over controls) compared to that found in barley seedlings infested by aphids, where chymotrypsin inhibitor activity showed a two-fold increment. No systemic induction could be detected in healthy leaves of an infested or mechanically injured plant. Exogenous ABA applied on barley leaves increased the chymotrypsin inhibitory activity, while JA only increased trypsin inhibitory activity locally and systemically when applied exogenously. Our data suggest that two different mechanisms may be regulating the induction of these two types of inhibitors.  相似文献   

9.
In order to study the regulation of carbohydrate metabolism in leaf tissue the activity of fructose-6-phosphate,2-kinase was determined in individual sections of developing primary leaves of barley. Activity was about 25-fold higher in the leaf tip than in the leaf sheath when measured on a fresh weight basis. There was a gradual increase in enzyme activity from the leaf base to the leaf tip. The higher activity of fructose-6-phosphate,2-kinase in the apical parts of the leaf was associated with higher levels of fructose-2,6-bisphosphate. This was especially pronounced when isolated leaf segments were treated with vanadate and kept in darkness. As compared to the kinase, little difference was observed in the fructose-2,6-bisphospatase activity among leaf sections. The significance of these patterns for regulation of carbohydrate metabolism in different tissues is discussed.  相似文献   

10.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 °C, 40 s). Under these circumstances, the K peak (∼ F400 μs) appears in the chl a fluorescence (OJIP) transient reflecting partial QA reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating QA accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this QA accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t1/2 ∼ 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

11.
Changes in acyl lipids and pigments during leaf development in a virescens barley mutant (M) and the normal (N) were studied. Apical 3-cm leaf segments were extracted with chloroform-methanol, the extracts were purified on Sephadex G-25 columns, and the polar lipids were separated on two-dimensional-thin layer chromatography silica gel plates. The pigment remaining on the Sephadex column was identified as flavonoids and a zone on the TLC plates which did not correspond to the usual standards was identified as gramine. Quantification of acyl lipids by either polar head group analysis or fatty acid analysis using heptadecanoate as an internal standard gave similar results. The per cent of the total lipid extract quantified for the M between 4 and 8 days ranged from 46 to 65% and that for the N ranged from 60 to 68%. Of these, acyl lipids represented 37 to 48% in the M and 43 to 50% in the N. By 8 days, mono- and digalacto-syldiglyceride (MG and DG) accounted for 45 and 25% of the total acyl lipid of both the M and N. For the period of study here, this represented a 4-fold increase in MG and a 2.5-fold increase in DG in the M but only a 1.8-fold increase for MG and DG in the N. These increases were closely correlated with the increases in chlorophyll. Chlorophyll increased sharply between 4 and 6 days for the N, whereas, in the M, it rose from 7 to 50% relative to the normal by 8 days. The proportions of the various fatty acids were unique for the lipid classes. The only major quantitative change for a fatty acid was for hexadecanoate in phosphatidylglycerol which increased from 5% at 4 days to 25 to 30% by 8 days. Relative to the N, the carotenoid content of the M increased from 14 to 50% between 4 and 8 days. In both the M and N, the increase in beta-carotene and chlorophyll were closely correlated.  相似文献   

12.
R. S. Pearce  A. Beckett 《Planta》1985,166(3):335-340
Low-temperature scanning electron microscopy was used to examine fracture faces in leaf blades taken from well-watered or drought-stressed barley (Hordeum vulgare L. cv. Mazurka) seedlings. The leaf blades were freeze-fixed while hydrated and were examined with or without gold-coating. There were droplets (with a smooth surface at the resolution achieved) on the surface of cell walls in leaf blades (0.91 g-1 water content) from well-watered seedlings grown in an environment of 67% relative humidity. These were mainly on the vascular bundle sheath, the guard and subsidiary cells, and on some mesophyll cells around the substomatal cavity and between the stoma and vascular bundle. The droplets occurred, more abundantly, in the same places in seedlings from 100% relative humidity. They occurred on a few guard cells from wilting leaf blades (0.81 g·g-1 water content) and were absent from severely drought-stressed leaf blades (0.15 g·g-1 water content). The droplets sublimed at the same moment as both water which was in leaf cells and water which was allowed to condense (after freeze-fixation) on the wall surface. It is suggested that the droplets are aqueous. Their possible origin and importance is discussed.  相似文献   

13.
The content of lead in greening etiolated barley leaves remained the same, regardless the time of incubation of excised leaves in the presence of lead ions (8–24 h). The lead deposits have not been detected within mesophyll cells, but were found in intercellular spaces of mesophyll, in guard cells and in cuticle covering stomata. This suggests that lead may be transported in the leavesvia transpiration stream. Lead reduced the content of chlorophyll, especially chlorophyllb content and the average number of grana, whereas in the presence of kinetin the content of chlorophyll increased. In the combined treatment (lead + kinetin) kinetin diminished the inhibitory effect of lead on the chlorophyll content. The number of chloroplasts in mesophyll cells remained unchanged after lead treatment, whereas kinetin alone or applied together with lead increased the average chloroplasts number. The thylakoids system in chloroplasts of kinetin and kinetin + lead treated plants was similar to that observed in control, although the grana number was smaller. Both lead and kinetin increased the content of condensed chromatin in nuclei.  相似文献   

14.
The effect of p-phenylenediamine and dibromothymoquinone (DBMIB) on photosynthetic electron transport was studied using thylakoids from barley chloroplasts. p-Phenylenediamine (0.1 mm) converted the light saturation curve for electron transport between water and ferricyanide from a hyperbolic one saturating at low light intensity into a linear one which was not saturated at any light intensity studied. DBMIB at a concentration of 1 μm had little inhibitory effect on the basal electron transport activity of coupled thylakoids in either the presence or the absence of 0.1 mmp-phenylenediamine. However, activity was inhibited by DBMIB after uncoupling with 60 mm methylamine. These results may indicate that there is a rate-limiting step in electron transport at or after plastoquinone which is circumvented by phenylenediamine. Its appearance or elaboration could explain the conversion of a linear light saturation curve to a hyperbolic one during chloroplast development. The movement of protons into thylakoids upon illumination was reduced about 50% by 1 μm DBMIB, a concentration which maximally inhibits ferricyanide-Hill activity after uncoupling. Fifty percent inhibition occurred irrespective of whether or not phenylenediamine was included in the reaction mixture. Most of the residual DBMIB-insensitive pH change was inhibited by 3 μm 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU), suggesting that photosystem II was required for the latter activity. In the presence of both DBMIB and DCMU, proton pump activity could be reestablished by including isoascorbate and p-phenylenediamine in the reaction mixture.  相似文献   

15.
Barley ( Hordeum vulgare L.) was grown in a glasshouse with 13.56 or 8.84 kJ m−2: biologically effective UV-B (280–320 nm: UV-BBE) simulating levels predicted to occur with 25 or 5% ozone depletion at 40°N latitude, with UV-A (320–400 mm), or with no supplemental irradiation. Activities of L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.5). chalcone-flavanone isomerase (CFI, EC 5.5.1.6) and peroxidase (EC 1.11.1.7) were determined from the 5th through the 30th day after planting. PAL regulates diversion of L-phenylalanine into precursors for secondary phenolics. CFI regulates an early step of flavonoid biosynthesis, and peroxidase activates phenolic precursors for cross-linking and rigidifying cell walls. At all ages UV-B decreased soluble protein leaf−1 but had little effect on fresh weight or CFI activity. Exposure to UV-B decreased peroxidase activity only slightly in early growth stages but decreased it about 40% by day 30. PAL activity was highest 5 days after planting under all treatments, decreased thereafter, and was not detectable in control plants after day 10. UV-B prolonged PAL activity through day 15 in plants given the highest level of UV-B. This UV-B prolongation of PAL activity is correlated with, and is a likely underlying mechanism to explain, the UV-B- enhanced accumulation of flavonoids and ferulic acid in barley primary leaves. The results are discussed in terms of barley leaf adaptation to UV-B as developmental response dependent on conditions of plant growth.  相似文献   

16.
Wild-type and mutant plants of barley (Hordeum vulgare L. cv. Maris Mink) lacking activities of chloroplastic glutamine synthetase (GS) and of ferredox-in-dependent glutamate synthase (Fd-GOGAT) were crossed to generate heterozygous plants. Crosses of the F2 generation containing GS activities between 47 and 97 of the wild-type and Fd-GOGAT activities down to 63 of the wild-type have been selected to study the control of both enzymes on photorespiratory carbon and nitrogen metabolism. There were no major pleiotropic effects. Decreased GS had a small impact on leaf protein and the total activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). The activation state of Rubisco was unaffected in air, but a decrease in GS influenced the activation state of Rubisco in low CO2. In illuminated leaves, the amino-acid content decreased with decreasing GS, while the content of ammonium rose, showing that even small reductions in GS limit ammonium re-assimilation and may bring about a loss of nitrogen from the plants, and hence a reduction in protein and Rubisco. Leaf amino-acid contents were restored, and ammonium and nitrate contents decreased, by leaving plants in the dark for 24 h. The ratios of serine to glycine decreased with a decrease in GS when plants were kept at moderate photon flux densities in air, suggesting a possible feedback on glycine decarboxylation. This effect was absent in high light and low CO2. Under these conditions ammonium contents exhibited an optimum and amino-acid contents a minimum at a GS activity of 65 of the wild-type, suggesting an inhibition of ammonium release in mutants with less than 65 GS. The leaf contents of glutamate, glutamine, aspartate, asparagine, and alanine largely followed changes in the total amino-acid contents determined under different environmental conditions. Decreased Fd-GOGAT resulted in a decrease in leaf protein, chlorophyll, Rubisco and nitrate contents. Chlorophyll a/b ratios and specific leaf fresh weight were lower than in the wild-type. Leaf ammonium contents were similar to the wild-type and total leaf amino-acid contents were only affected in low CO2 at high photon flux densities, but mutants with decreased Fd-GOGAT accumulated glutamine and contained less glutamate.Abbreviations Chl chlorophyll - FBPase fructose-1,6-bisphosphatase - Fd-GOGAT ferredoxin-dependent glutamine: 2-oxoglutarate aminotransferase - GS glutamine synthetase - PEP phosphoenolpyruvate - PFD photon flux density - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase This research was jointly supported by the Agricultural and Food Research Council and the Science and Engineering Research Council, U.K. in the programme on Biochemistry of Metabolic Regulation in Plants (PG50/555).  相似文献   

17.
Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 degrees C, 40 s). Under these circumstances, the K peak (approximately F(400 micros)) appears in the chl a fluorescence (OJIP) transient reflecting partial Q(A) reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating Q(A)(-) accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this Q(A)(-) accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t(1/2) approximately 30 ms. This alternative electron donor is most probably ascorbate.  相似文献   

18.
The metabolism of [3H]formate has been examined in etiolated and greening leaves of barley (Hordeum vulgare), dwarf bean (Phaseolus vulgarls), broad bean (Vicia faba) and corn (Zea mays). Tritium was extensively incorporated by primary leaves incubated for 20-min periods in light or dark. The organic acids and free amino acids were the principal products of formate metabolism but these and other products were more heavily labelled in green tissues. Time course experiments with barley leaves revealed a rapid labelling of serine, accompanied by increasing amounts of 3H in glycine and aspartate as the feeding period was extended. These amino acid products were formed throughout a 4-day greening period with an approximate doubling in total incorporation being due to large accumulations of tritiated glycine and aspartate. The involvement of tetrahydrofolate-dependent reactions in formate metabolism was indicated by inhibition of [14C] and [3H]formate incorporation by the folate antagonist, aminopterin. Labelling of glycine and serine was also strongly inhibited (up to 90%) when the leaves were incubated with increasing concentrations of isonicotinylhydrazide.  相似文献   

19.
20.
CoASH, Mg2+, ATP and (-)-carnitine were found to be essential for the production of palmitoylcarnitine from palmitate by purified barley etio-chloroplasts. It was concluded that long-chain acyl CoA synthetase (palmitoyl CoA synthetase, EC 6.2.1.3) and carnitine long-chain acyl-transferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity were present in the etio-chloroplasts. It is suggested that the long-chain acylcarnitine formed may move more easily through membrane barriers than the long-chain acyl CoA compound. Also or alternatively this enzyme may spare CoA by transferring long-chain acyl groups from long-chain acyl CoA to carnitine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号