首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Moriya R  Uehara T  Nomura Y 《FEBS letters》2000,484(3):253-260
We have attempted to elucidate the precise mechanism of nitric oxide (NO)-induced apoptotic neuronal cell death. Enzymatic cleavages of DEVD-AFC, VDVAD-AFC, and LEHD-AFC (specific substrates for caspase-3-like protease (caspase-3 and -7), caspase-2, and caspase-9, respectively) were observed by treatment with NO. Western blot analysis showed that pro-forms of caspase-2, -3, -6, and -7 are decreased during apoptosis. Interestingly, Ac-DEVD-CHO, a caspase-3-like protease inhibitor, blocked not only the decreases in caspase-2 and -7, but also the formation of p17 from p20 in caspase-3 induced by NO, suggesting that caspase-3 exists upstream of caspase-2 and -7. Bongkrekic acid, a potent inhibitor of mitochondrial permeability transition, specifically blocked both the loss of mitochondrial membrane potential and subsequent DNA fragmentation in response to NO. Thus, NO results in neuronal apoptosis through the sequential loss of mitochondrial membrane potential, caspase activation, and degradation of inhibitor of caspase-activated DNase (CAD) (CAD activation).  相似文献   

2.
Neural progenitor cells (NPC) can proliferate, differentiate into neurons or glial cells, or undergo a form of programmed cell death called apoptosis. Although death of NPC occurs during development of the nervous system and in the adult, the underlying mechanisms are unknown. Here we show that nitric oxide (NO) can induce death of C17.2 NPC by a mechanism requiring activation of p38 MAP kinase, poly(ADP-ribose) polymerase, and caspase-3. Nitric oxide causes release of cytochrome c from mitochondria, and Bcl-2 protects the neural progenitor cells against nitric oxide-induced death, consistent with a pivotal role for mitochondrial changes in controlling the cell death process. Inhibition of p38 MAP kinase by SB203580 abolished NO-induced cell death, cytochrome c release, and activation of caspase-3, indicating that p38 activation serves as an upstream mediator in the cell death process. The anti-apoptotic protein Bcl-2 protected NPC against nitric oxide-induced apoptosis and suppressed activation of p38 MAP kinase. The ability of nitric oxide to trigger death of NPC by a mechanism involving p38 MAP kinase suggests that this diffusible gas may regulate NPC fate in physiological and pathological settings in which NO is produced.  相似文献   

3.
Nitric oxide (NO) can induce apoptosis in a variety of cell types. A non-toxic concentration of nitric oxide under normal oxygen conditions triggered cell death under hypoxic conditions (1.5% O(2)) in fibroblasts. Nitric oxide administered during hypoxia induced the release of cytochrome c, caspase-9 activation, and the loss of mitochondrial membrane potential followed by DNA fragmentation and lactate dehydrogenase release (markers of cell death). Bcl-X(L) protected cells from nitric oxide-induced apoptosis during hypoxia by preventing the release of cytochrome c, caspase-9 activation, and by maintaining a mitochondrial membrane potential. Murine embryonic fibroblasts from bax(-/-) bak(-/-) mice exposed to nitric oxide during hypoxia did not die, indicating that pro-apoptotic Bcl-2 family members are required for NO-induced apoptosis during hypoxia. The nitric oxide-induced cell death during hypoxia was independent of cGMP and peroxynitrite. Cells devoid of mitochondrial DNA (rho secondary-cells) lack a functional electron transport chain and were resistant to nitric oxide-induced cell death during hypoxia, suggesting that a functional electron transport chain is required for nitric oxide-induced apoptosis during hypoxia.  相似文献   

4.
Identification of AP-1 target genes in apoptosis and differentiation has proved elusive. Secretogranin II (SgII) is a protein widely distributed in nervous and endocrine tissues, and abundant in neuroendocrine granules. We addressed whether SgII is regulated by AP-1, and if SgII is involved in neuronal differentiation or the cellular response to nitrosative stress. Nitric oxide (NO) upregulated sgII mRNA dependent on a cyclic AMP response element (CRE) in the sgII promoter, and NO stimulated SgII protein secretion in neuroblastoma cells. Upregulation of sgII mRNA, sgII CRE-driven gene expression and SgII protein synthesis/export were attenuated in cells transformed with dominant-negative c-Jun (TAM67), which became sensitized to NO-induced apoptosis and failed to undergo nerve growth factor-dependent neuronal differentiation. Stable transformation of TAM67 cells with sgII restored neuronal differentiation and resistance to NO. RNAi knockdown of sgII in cells expressing functional c-Jun abolished neuronal differentiation and rendered the cells sensitive to NO-induced apoptosis. Therefore, SgII represents a key AP-1-regulated protein that counteracts NO toxicity and mediates neuronal differentiation of neuroblastoma cells.  相似文献   

5.
Nitric oxide is a chemical messenger implicated in neuronal damage associated with ischemia, neurodegenerative disease, and excitotoxicity. Excitotoxic injury leads to increased NO formation, as well as stimulation of the p38 mitogen-activated protein (MAP) kinase in neurons. In the present study, we determined if NO-induced cell death in neurons was dependent on p38 MAP kinase activity. Sodium nitroprusside (SNP), an NO donor, elevated caspase activity and induced death in human SH-SY5Y neuroblastoma cells and primary cultures of cortical neurons. Concomitant treatment with SB203580, a p38 MAP kinase inhibitor, diminished caspase induction and protected SH-SY5Y cells and primary cultures of cortical neurons from NO-induced cell death, whereas the caspase inhibitor zVAD-fmk did not provide significant protection. A role for p38 MAP kinase was further substantiated by the observation that SB203580 blocked translocation of the cell death activator, Bax, from the cytosol to the mitochondria after treatment with SNP. Moreover, expressing a constitutively active form of MKK3, a direct activator of p38 MAP kinase promoted Bax translocation and cell death in the absence of SNP. Bax-deficient cortical neurons were resistant to SNP, further demonstrating the necessity of Bax in this mode of cell death. These results demonstrate that p38 MAP kinase activity plays a critical role in NO-mediated cell death in neurons by stimulating Bax translocation to the mitochondria, thereby activating the cell death pathway.  相似文献   

6.
Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis, but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO, we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development of modalities in tobacco cessation programs. Abhijit G. Banerjee and Velliyur K. Gopalakrishnan—contributed equally.  相似文献   

7.
The control of medial and neointimal growth, in which vascular smooth muscle (VSM) plays a central role, is most important to the development of hypertension and atherosclerosis, respectively. Growth of vascular smooth muscle cells is regulated by a number of factors, including the vasodilator nitric oxide (NO). In addition, NO modulates intracellular thiol redox states and the thiol redox state of the cell influences NO production. We, therefore, examined the nature of the effect of NO on growth of VSM cells and its modulation by cellular glutathione content. Here, we report that NO, either generated by NO donors or synthesized by iNOS in VSM cells, inhibited DNA synthesis and induced apoptosis in this cell type. NO-induced apoptosis was associated with a significant decrease in the intracellular concentration of reduced glutathione and with an increase in the level of the tumor suppressor gene p53 mRNA. Moreover, addition of glutathione monoethylester to the culture restored the level of reduced glutathione in VSM cells, and prevented the NO-induced increase in p53 expression and programmed cell death. Our findings suggest a role for reduced glutathione in protecting VSM cells exposed to NO from apoptosis.  相似文献   

8.
9.
Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein that protects mammalian cells from apoptosis by redox reagents, is a metal chelator and a potential reactive oxygen species (ROS) scavenger, but its antioxidant properties have not been completely defined. Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative stress. In this report, we demonstrate that modulation of SAG expression in U937 cells regulates NO-induced apoptosis. When we examined the protective role of SAG against NO-induced apoptosis with U937 cells transfected with the cDNA for SAG, a clear inverse relationship was observed between the amount of SAG expressed in target cells and their susceptibility to apoptosis. We also observed the significant decrease in the endogenous production of ROS and oxidative DNA damage in SAG-overexpressed cells compared to control cells upon exposure to NO. These results suggest that SAG plays an important protective role in NO-induced apoptosis, presumably, through regulating the cellular redox status.  相似文献   

10.
Neuronal injury is intricately linked to the activation of three distinct neuronal endonucleases. Since these endonucleases are exquisitely pH dependent, we investigated in primary rat hippocampal neurons the role of intracellular pH (pH(i)) regulation during nitric oxide (NO)-induced toxicity. Neuronal injury was assessed by both a 0.4% Trypan blue dye exclusion survival assay and programmed cell death (PCD) with terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) 24 h following treatment with the NO generators sodium nitroprusside (300 microM), 3-morpholinosydnonimine (300 microM), or 6-(2-hyrdroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hex anamine (300 microM). The pH(i) was measured using the fluorescent probe BCECF. NO exposure yielded a rapid intracellular acidification during the initial 30 min from pH(i) 7.36 +/- 0.01 to approximately 7.00 (p <.0001). Within 45 min, a biphasic alkaline response was evident, with pH(i) reaching 7.40 +/- 0.02, that was persistent for a 6-h period. To mimic the effect of NO-induced acidification, neurons were acid-loaded with ammonium ions to yield a pH(i) of 7.09 +/- 0.02 for 30 min. Similar to NO toxicity, neuronal survival decreased to 45 +/- 2% (24 h) and DNA fragmentation increased to 58 +/- 8% (24 h) (p <.0001). Although neuronal caspases did not play a dominant role, neuronal injury and the induction of PCD during intracellular acidification were dependent upon enhanced endonuclease activity. Furthermore, maintenance of an alkaline pH(i) of 7.60 +/- 0.02 during the initial 30 min of NO exposure prevented neuronal injury, suggesting the necessity for the rapid but transient induction of intracellular acidification during NO toxicity. Through the identification of the critical role of both NO-induced intracellular acidification and the induction of the neuronal endonuclease activity, our work suggests a potential regulatory trigger for the prevention of neuronal degeneration.  相似文献   

11.
The sustained overproduction of nitric oxide (NO) observed in inflammatory conditions can contribute to cell demise by affecting apoptosis. Nitration of tyrosine residues occurs in a range of diseases involving macrophage activation. Since NO induces apoptosis in monocytes/macrophages, we tested the hypothesis that nitration of specific proteins could result in apoptotic cell death. The peroxynitrite generator SIN-1 promoted apoptosis in monocytes based on oligonucleosomal DNA fragmentation, caspase-3 and -9 activation, Bcl-2 depletion and accumulation of Bax and p53 proteins. We also found that the signaling pathway triggered by SIN-1 was initiated through tyrosine kinase and Rac activation and resulted in increased JNK and p38 activities. Among the tyrosine-nitrated proteins, Rac and Lyn were identified. Using specific inhibitors for different signaling and effector molecules involved in the apoptotic process we demonstrate that NO, via protein-nitration, could play an important role in controlling the inflammatory response by regulation of monocyte homeostasis.  相似文献   

12.
Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro-monocytic cells against the nitrogen free radical, nitric oxide (*NO). Cells were incubated for 4-6 h with 500 microM S-nitrosoglutathione (GSNO), which generates *NO, but this did not induce single-strand breaks in DNA. Nevertheless, 82 +/- 4% of GSNO-treated cells, compared to only 39 +/- 1% of untreated cells, were arrested in the G(1)-phase of the cell cycle. However, dosing the GSNO-treated cells with 9, 14, or 18 microg/ml of EGCG resulted in only 74 +/- 8%, 66 +/- 1%, and 43 +/- 3% of the cells, respectively, in the G(1)-phase. Exposing cells to GSNO also resulted in the emergence of a sub-G(1) apoptotic cell population numbering 14 +/- 3%, but only 5 +/- 2%, 5 +/- 1%, and 2 +/- 0% upon dosing of the GSNO-treated cells with 9, 14, and 18 microg/ml of EGCG, respectively. Furthermore, exposing cells to GSNO resulted in greater cell surface binding of annexin V-FITC, but binding was 41-89% lower in GSNO-treated cells dosed with EGCG. Collectively, these data suggest that *NO or downstream products induced cell cycle arrest and apoptosis that was not due to single-strand breaks in DNA, and that EGCG scavenged cytotoxic *NO or downstream products, thus reducing the number of cells in a state of cell cycle arrest or apoptosis.  相似文献   

13.
The functionalrole of p53 in nitric oxide (NO)-mediated vascular smooth muscle cell(VSMC) apoptosis remains unknown. In this study, VSMC fromp53/ and p53+/+ murine aortas were exposedto exogenous or endogenous sources of NO. Unexpectedly,p53/ VSMC were much more sensitive to theproapoptotic effects of NO than were p53+/+ VSMC.Furthermore, this paradox appeared to be specific to NO, because otherproapoptotic agents did not demonstrate this differential effect onp53/ cells. NO-induced apoptosis inp53/ VSMC occurred independently of cGMP generation.However, mitogen-activated protein kinase (MAPK) pathways appeared toplay a significant role. Treatment of the p53/ VSMCwith S-nitroso-N-acetylpenicillamine resulted ina marked activation of p38 MAPK and, to a lesser extent, of c-JunNH2-terminal kinase, mitogen-activated protein kinasekinase (MEK) 1/2, and p42/44 (extracellular signal-regulated kinase,ERK). Furthermore, basal activity of the MEK-p42/44 (ERK)pathway was increased in the p53+/+ VSMC. Inhibition of p38MAPK with SB-203580 or of MEK1/2 with PD-98059 blocked NO-inducedapoptosis. Therefore, p53 may protect VSMC against NO-mediatedapoptosis, in part, through differential regulation of MAPK pathways.

  相似文献   

14.
This study investigated the molecular mechanisms underlying inhibition of protein kinase C (PKC) zeta by p38 kinase during nitric oxide (NO)-induced apoptosis of chondrocytes. Coimmunoprecipitation experiments showed that activation of p38 kinase following addition of an NO donor resulted in a physical association between PKCzeta and p38 kinase. Direct interaction of p38 kinase with PKCzeta was confirmed in vitro using p38 kinase and PKCzeta recombinant proteins. p38 kinase interacts with the regulatory domain of PKCzeta and its association blocked PKCzeta autophosphorylation. Micro LC-MS/MS analysis using recombinant proteins indicated that the interaction of p38 kinase with PKCzeta blocked autophosphorylation of PKCzeta on Thr-560, which is required for PKCzeta activation. Collectively, our results demonstrate a novel mechanism of PKCzeta regulation: following activation by the production of NO, p38 kinase binds directly to the PKCzeta regulatory domain, preventing PKCzeta autophosphorylation on Thr-560, thereby inhibiting PKCzeta activation.  相似文献   

15.
An increasing body of evidence suggests that nitric oxide (NO) can be cytotoxic and induce apoptosis. NO can also be genotoxic and cause DNA damage and mutations. It has been shown that NO damages mitochondrial DNA (mtDNA) to a greater extent than nuclear DNA. Previously, we reported that conditional targeting of the DNA repair protein hOGG1 into mitochondria using a mitochondria targeting sequence (MTS) augmented mtDNA repair of oxidative damage and enhanced cellular survival. To determine whether enhanced repair resulting from augmented expression of hOGG1 could also protect against the deleterious effects of NO, we used HeLa TetOff/MTS-OGG1-transfected cells to conditionally express hOGG1 in mitochondria. The effects of additional hOGG1 expression on repair of NO-induced mtDNA damage and cell survival were evaluated. These cells, along with vector transfectants, in either the presence or absence of doxycycline (Dox), were exposed to NO produced by the rapid decomposition of 1-propanamine, 3-(2-hydroxy-2-nitroso-1-propylhydrazino) (PAPA NONOate). Functional studies revealed that cells expressing recombinant hOGG1 were more proficient at repairing NO-induced mtDNA damage, which led to increased cellular survival following NO exposure. Moreover, the results described here show that conditional expression of hOGG1 in mitochondria decreases NO-induced inhibition of ATP production and protects cells from NO-induced apoptosis.  相似文献   

16.
Superoxide plays an important role in pulmonary arterial smooth muscle cell (SMC) proliferation and survival. The rapid reaction between superoxide and nitric oxide (NO) to form peroxynitrite suggests that endothelium-derived NO may influence adjacent SMC growth. To investigate this possibility, we determined the dose-dependent effects of NO on the proliferation and viability of pulmonary arterial SMC isolated from fetal lambs (FPASMC). Using fluorescence microscopy we found a dose-dependent decrease in superoxide levels in FPASMC treated with the NO donor spermine NONOate. This was associated with an increase in peroxynitrite-mediated protein nitration. At doses between 50 and 250 microM, spermine NONOate attenuated serum-induced FPASMC proliferation resulting in a G(0)/G(1) cell cycle arrest. This process involved a decrease in levels of cyclin A and an increase in the nuclear localization of p21 and p27. Furthermore, 500 microM spermine NONOate decreased viable cell number by inducing programmed cell death: FPASMC treated with 500 microM spermine NONOate displayed a loss of mitochondrial membrane potential, followed by caspase activation and DNA fragmentation. These data suggest that NO inhibits superoxide-induced proliferation of FPASMC and at higher doses induces apoptosis. NO donors may therefore prove to be useful therapeutic tools to treat diseases resulting from excessive proliferation of vascular smooth muscle.  相似文献   

17.
Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an E3-ubiquitin-ligase with a nuclear localization signal (NLS). The GAPDH-Siah1 protein complex, in turn, translocates to the nucleus and mediates cell death; these processes are blocked by procedures that interfere with GAPDH-Siah1 binding. Nuclear events induced by GAPDH to kill cells have been obscure. Here we show that nuclear GAPDH is acetylated at Lys 160 by the acetyltransferase p300/CREB binding protein (CBP) through direct protein interaction, which in turn stimulates the acetylation and catalytic activity of p300/CBP. Consequently, downstream targets of p300/CBP, such as p53 (Refs 10,11,12,13,14,15), are activated and cause cell death. A dominant-negative mutant GAPDH with the substitution of Lys 160 to Arg (GAPDH-K160R) prevents activation of p300/CBP, blocks induction of apoptotic genes and decreases cell death. Our findings reveal a pathway in which NO-induced nuclear GAPDH mediates cell death through p300/CBP.  相似文献   

18.
Survivin is expressed in most tumor cells and has been associated with both anti-apoptosis and mitotic progression. However, the mechanism of regulation of the survivin expression remains unclear. In this study we investigated the expression and regulation of survivin in the nitric oxide (NO)-exposed human lung carcinoma cells. The lung carcinoma cell lines CL3, H1299, and A549 but not normal lung fibroblast expressed high levels of survivin proteins. NO donors S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) decreased the survivin expression. SNAP (0.4 mm, 24h)and SNP (1 mm, 24 h) significantly induced cytotoxicity and apoptosis in lung carcinoma cells. Furthermore, SNAP inhibited the cell growth and increased the fractions of G(2)/M phase. The levels of cyclin B1 and phospho-cdc2-(Thr-161) proteins were inhibited in the NO-exposed cells. The cdc25 phosphatase inhibitors (Cpd 5 and NSC 663284) and the cdc2 kinase inhibitors (alsterpaullone and purvalanol A) enhanced SNP-induced cytotoxicity and the decrease in survivin expression. However, overexpression of survivin by a pOTB7-survivin vector reduced SNP-induced cell growth inhibition and cytotoxicity. In addition, SNP activated the phosphorylation of p38 mitogen-activated protein (MAP) kinase. The specific p38 MAP kinase inhibitor, SB202190, significantly decreased the cytotoxicity and increased the survivin levels in NO donor-treated and inducible NOS-transfected cells. Conversely, anticancer agents including quercetin, arsenite, and cisplatin but not genistein increased the levels of survivin protein. Our results indicated for the first time that NO inhibited the expression of survivin, which was down-regulated by the p38 MAP kinase pathway.  相似文献   

19.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

20.
The addition of phorbol esters to U937 leukemic cells stimulates the phosphorylation of c-Jun on serines 63 and 73. To isolate the protein kinase which stimulates this phosphorylation, we have used heparin-Sepharose chromatography followed by affinity chromatography over glutathione-Sepharose beads bound with a fusion protein of glutathione S-transferase and amino acids 5-89 of c-Jun (GST-c-Jun). Using this procedure we purify a 67-kDa protein which is capable of phosphorylating GST-c-Jun as well as the complete c-Jun protein. By making mutations in serines 63 and 73 and then creating a fusion protein with GST (GST-c-Jun mut), we demonstrate that this protein kinase specifically phosphorylates these sites in the c-Jun amino terminus. Treatment of purified c-Jun amino-terminal protein kinase (cJAT-PK) with phosphatase 2A inhibits its ability to phosphorylate GST-c-Jun. This inactivated enzyme can be reactivated by phosphorylation with protein kinase C (PKC), although PKC is not capable of phosphorylating the GST-c-Jun substrate. Because v-Jun cannot be phosphorylated in vivo, we compared the ability of cJAT-PK to bind to GST-v-Jun or GST-c-Jun mut. The cJAT-PK bound 50-fold better to GST-c-Jun mut than GST-v-Jun suggesting that the delta domain which is missing in v-Jun plays a role in binding the cJAT-PK. These results suggest that there is a protein kinase cascade mediated by protein phosphatases and PKC which regulates c-Jun phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号