首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments allowing Na+-dependent short-term uptake measurements by ileal brush border vesicles were described. Glucose uptake was compared with taurocholate uptake in the presence of NaCl, NaSCN and Na2SO4. In contrast to the observation made with glucose, taurocholate transport was the same for the three electrolytes, indicating electroneutral taurocholate transport.  相似文献   

2.
3.
Summary The ion permeability of rabbit jejunal brush border membrane vesicles was studied by measuring unidirectional fluxes with radioactive tracers and bi-ionic diffusion potentials with the potential-sensitive fluorescent dye, diS–C3-(5). Tracer measurements provide estimates of the absolute magnitudes of permeability coefficients, while fluorescence measurements provide estimates of relative and absolute ion permeabilities. The magnitudes of the permeability coefficients for Na+, K+, Rb+, and Br were approximately 5 nanoliters/(mg protein × sec) or 10–5 cm/sec as determined by radioactive tracer measurements. The apparent selectivity sequence, relative to Na+, as determined by bi-ionic potential measurements was: F, isetheionate, gluconate, choline (<0.1)+(1.0)–(1.5)=NO 3 (1.5)–(2.3)+(2.4)+(2.5)+(2.6)+(3.9) 4 +(12)–(40). The origin of this selectivity sequence and its relationship to the ion permeability of the brush border membrane in the intact epithelium are discussed.  相似文献   

4.
As part of the enterohepatic circulation, taurocholate is taken up by hepatocytes by a Na+-gradient-dependent, carrier-mediated process. The dependence of taurocholate uptake on the presence of a Na+ gradient, outside greater than inside, has been studied in isolated rat liver plasma membranes. The uptake is specific for sodium, and a cotransport stoichiometry of 2 Na+ per taurocholate taken up was found. The presence of K+ ions inside the vesicles was also found to be essential for maximum Na+-stimulated uptake of taurocholate, although a K+ gradient is not required. Mg2+ was almost as effective as K+ in this regard. The symport of Na+ and taurocholate during uptake was shown to be electrogenic, so that K+ may act as an exchange counterion preventing the accumulation of positive charge within the vesicles.Dedicated to the memory of Prof. David E. Green, friend, mentor, and colleague.  相似文献   

5.
Ketone body uptake by renal brush border vesicles has been investigated. Ketone bodies enter into the brush border vesicles by a carrier-mediated process. The uptake is dependent on an Na+ gradient ([Na+]outside > [Na+]inside) and is electroneutral. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. A pH gradient (alkaline inside) also stimulates the ketone body uptake. Acetoacetate and 3-hydroxybutyrate share the same carrier as demonstrated by the accelerated exchange diffusion and mutual inhibitory effects.  相似文献   

6.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

7.
A longstanding question about the possible dependence of transmembrane peptide transport on sodium has now been resolved. Recent studies with purified intestinal brush border membrane vesicles have shown that peptide transport across this membrane is Na+-independent and occurs by a non-concentrative mechanism. Similar studies with renal brush border membrane vesicles have established for the first time the presence of a peptide transport system in mammalian kidney. The essential characteristics of peptide transport in these two tissues are the same. However, it still remains to be seen whether a new mechanism other than the Na+-gradient, hitherto unrecognized, is involved in energizing the active transport of peptides in vivo in mammalian intestine and kidney.  相似文献   

8.
9.
10.
Li T  Tomimatsu T  Ito K  Horie T 《Life sciences》2003,73(20):2631-2639
The transport characteristics of fluorescein-methotrexate (F-MTX) in isolated brush border membrane vesicles (BBMVs) from rat small intestine were studied. F-MTX uptake in BBMVs was measured by a rapid filtration technique. Our results demonstrated that F-MTX uptake into vesicles was 1) significantly increased under the experimental conditions of an outwardly directed OH(-) gradient or an inwardly directed H(+)gradient, 2) sensitive to temperature, 3) increased with decreasing pH of the incubation buffer, 4) significantly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) at the early stage of the uptake, and 5) significantly inhibited by methotrexate (MTX). Thus, the transport of F-MTX in BBMVs was shown to be mediated in part by the reduced folate transporter (RFC) which was known to transport MTX through the epithelium of small intestine.  相似文献   

11.
12.
M Takano  K Inui  T Okano  R Hori 《Life sciences》1985,37(17):1579-1585
The transport of cimetidine by rat renal brush border and basolateral membrane vesicles has been studied in relation to the transport system of organic cation. Cimetidine inhibited [3H]tetraethylammonium uptake by basolateral membrane vesicles in a dose dependent manner, and the degree of the inhibition was almost the same as that by unlabeled tetraethylammonium. In contrast, cimetidine inhibited the active transport of [3H]tetraethylammonium by brush border membrane vesicles more strongly than unlabeled tetraethylammonium did. In agreement with the transport mechanism of tetraethylammonium in brush border membranes, the presence of an H+ gradient ([H+]i greater than [H+]o) induced a marked stimulation of cimetidine uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was inhibited by unlabeled tetraethylammonium. These results suggest that cimetidine can share common carrier transport systems with tetraethylammonium in renal brush border and basolateral membranes, and that cimetidine transport across brush border membranes is driven by an H+ gradient via an H+-organic cation antiport system.  相似文献   

13.
Brush border membranes were isolated from rat renal cortex by a divalent cation precipitation method. L-35S-cysteine uptake into the vesicles was measured by a rapid filtration method. Only minimal binding of the amino acid to the vesicles was observed. Sodium stimulates L-cysteine uptake specifically. Anion replacement experiments, experiments in the presence of potassium/valinomycin-induced diffusion potential as well as experiments with a potential-sensitive fluorescent dye document an electrogenic sodium-dependent uptake mechanism for L-cysteine. Tracer replacement experiments as well as the fluorescence experiments indicate a preferential transport of L-cysteine. Transport of L-cysteine is inhibited by L-alanine and L-phenylalanine but not by L-glutamic acid and the L-basic amino acids. Initial, linear influx kinetics provide evidence for the existence of two transport sites. The results suggest (a) sodium-dependent mechanism(s) for L-cysteine shared by other neutral amino acids.  相似文献   

14.
The transport of the bile salt, glycodeoxycholate, was studied in vesicles derived from rat jejunal and ileal brush border membranes using a rapid filtration technique. The uptake was osmotically sensitive, linearly related to membrane protein and resembled D-glucose transport. In ileal, but not jejunal, vesicles glycodeoxycholate uptake showed a transient vesicle/medium ratio greater than 1 in the presence of an initial sodium gradient. The differences between glycodeoxycholate uptake in the presence and absence of a Na+ gradient yielded a saturable transport component. Kinetic analysis revealed a Km value similar to that described previously in everted whole intestinal segments and epithelial cells isolated from the ileum. These findings support the existence of a transport system in the brush border membrane that: (1) reflects kinetics and characteristics of bile salt transport in intact intestinal preparations, and (2) catalyzes the co-transport of Na+ and bile salt across the ileal membrane in a manner analogous to D-glucose transport.  相似文献   

15.
The kinetics of K(+)-leucine cotransport in the midgut of lepidopteran larvae was investigated using brush border membrane vesicles. Initial rate (3 s) of leucine uptake was determined under experimental conditions similar to those occurring in vivo, i.e. in the presence of delta psi much greater than 0 (inside negative) and a delta pH of 1.4 units (7.4in/8.8out). Leucine and K+ bind to the carrier according to a sequential mechanism, and the binding of one substrate changed the dissociation constant for the other substrate by a factor of 0.15. Both trans-K+ and trans-leucine were mixed-type inhibitors of leucine uptake. Moreover, a portion of total leucine uptake was K+ independent, and it was competitively inhibited by trans-leucine. We interpret the trans inhibitory effects to mean that the partially loaded K+ only form is virtually unable to translocate across the membrane, whereas the binary complex carrier, leucine, can isomerize from the trans to the cis side of the membrane. However, the K(+)-independent leucine uptake occurs with a Keq greater than 1, i.e. the efflux route through the partially loaded leucine only form is slower than the rate of isomerization of the unloaded carrier from trans to cis side. Taken together, these results suggest a model in which transport occurs by an iso-random Bi Bi system. Since K+ does not act as a pure competitive activator, this model is different from that proposed for most of the Na(+)-linked solutes transport agencies and may be related to the broadening of the cation specificity of the amino acid transporters in lepidopteran larvae.  相似文献   

16.
Isolated brush-border membrane vesicles prepared from human placenta are known to transport amino acids via a Na+-dependent mechanism akin to that found in gut and kidney vesicle preparations. We studied sulfate transport in placental vesicles and failed to identify any Na+-dependent uptake mechanism. Rather, uptake is a non-electrogenic process that is trans-stimulated by outwardly directed anion flux which is independent of cation. If anion exchange is tightly coupled invivo, the net transfer of sulfate from mother to the growing fetus may be driven by the continuous flux of bicarbonate in the opposite direction.  相似文献   

17.
18.
Taurocholate uptake by vesicles prepared from brush borders obtained from the small intestines of guinea pigs was studied. Vesicles obtained from the brush borders of ileums demonstrated an enhanced initial uptake in those incubations where a sodium ion gradient (extravesicular sodium concentration greater than intravesicular) was present at the outset. With the dissipation of this sodium gradient the intravesicular concentration of taurocholate declined. This overshoot phenomenon was absent in parallel incubations of vesicles made from jejunal tissue. When the sodium chloride was replaced by isosmotic amounts of mannitol no overshoot was observed in incubations of ileal vesicles until subsequent addition of sodium chloride to these incubations. These observations are in accord with the idea that those subcellular structural elements operating in the ileal bile salt transport system are associated with the brush border membranes of the ileal mucosal cells.  相似文献   

19.
D-Glucose transport was investigated in isolated brush border membranes from small intestine. The transport properties of membranes from upper jejunum were compared with those from terminal ileum. The jejunal membranes accumulate D-glucose to a greater extent than the ileal membranes when supplied with energy in the form of a NaSCN gradient. This difference in behavior is similar to that of the more intact epithelial preparations and suggests that the isolated membranes actually reflect the state present in intact cells. Ileal membranes transported D-glucose about two to three times slower than the jejunal ones, which can partially explain the lower sugar accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号