首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to label very early erythrocyte and lymphocyte populations and to follow their fate in normally developing postmetamorphic frogs and goitrogen-treated permanent larvae, diploid (2N) and triploid (3N) ventral blood island (VBI) mesoderm was exchanged between neurula stage embryos (about 16-22 hr old). Beginning at 15 days of age, half of the 2N or 3N hosts were treated with sodium perchlorate to prevent thyroxine-induced developmental changes. At larval stages 55-59 (41-48 days) and at 1-2 months postmetamorphosis (110-120 days), the untreated control chimeras and age-matched perchlorate-treated chimeras were killed for analysis of the VBI contribution to blood, spleen, and thymus populations by flow cytometry. The data suggest that grafting of ventral blood island mesoderm is an effective way to label an early larval erythrocyte population that declines after metamorphosis. In perchlorate-blocked permanent larvae this early VBI-derived erythrocyte population persists. In contrast, grafting of VBI mesoderm was less useful as a method to label a larvally distinct lymphocyte population in the thymus and spleen. At the late larval stages that we examined, the proportion of VBI-derived cells in thymus and spleen was not different from that observed after metamorphosis. Inhibition of metamorphosis interfered with the thymocyte expansion that normally occurs after metamorphosis, but the proportion of VBI-derived cells in thymus and spleen was not affected. This suggests that lymphopoiesis occurring in late larval life and after metamorphosis uses a stable persisting population of VBI-derived stem cells as well as dorsally derived stem cells.  相似文献   

2.
The first hemopoietic stem cells to differentiate in Xenopus embryos arise from ventral blood island (VBI) mesoderm. Progeny of these stem cells contribute to larval E, macrophage, thymocyte, and B lymphocyte populations. When small pieces of mesoderm are transplanted to a central location within the VBI, the contribution of this mesoderm is predominantly to erythropoiesis and engraftment of lymphoid populations is minimal. The present experiments examined the influence of position within the VBI on the contribution of single stem cells to lymphoid populations. Pieces of diploid VBI mesoderm, containing an average of one hemopoietic stem cell, were transplanted to either a central or a peripheral location within the defined boundaries of the VBI of triploid, stage matched embryos. The number of animals with donor-derived cells in lymphoid populations was markedly increased when stem cells were grafted to a peripheral position. In three cases, stem cells contributed to lymphoid populations at the exclusion of erythroid populations. These data were consistent with the notion of either a lymphoid stem cell or restricted B and T lymphocyte precursors. These data also suggested that during embryogenesis, stochastic differentiation of hemopoietic stem cells was influenced by regional differences in the VBI microenvironment.  相似文献   

3.
The thymocytes in the early larvae of Xenopus laevis have been shown to be derived from precursor cells immigrating interstitially through the mesenchyme into the organ rudiments at 3-4 days of age (Nieuwkoop and Faber stages 42-45). Orthotopic grafting of diploid tissues onto triploid stage 22 embryos followed by ploidy analyses of their hemopoietic cells revealed that both thymocytes and erythrocytes in early larvae are derived from the ventral blood islands (VBI), whereas those in late larvae and adults come mainly from the dorsolateral plate (DLP). To study how the VBI cells of embryos at stage 22 participate in hemopoiesis, a number of interspecific chimeras were produced in X. laevis and X. borealis embryos. Sections of the chimeras at various developmental stages were examined by employing the unique stainability of X. borealis nuclei to quinacrine as a marker; the results show that the VBI-derived cells enter into the circulation around stage 35/36, and that some of them leave the blood vessels to migrate interstitially through the mesenchyme toward the thymic rudiment during stages 43-45. A minor population of the VBI-derived cells was also found extravascularly in the mesonephric primordia. In contrast to the VBI, the DLP-derived cells contributed to the hemopoietic cell population not in early larvae, but in late ones as a major constituent in the mesonephros, thymus, liver, and peripheral blood.  相似文献   

4.
For determination of the localization of lymphoid and erythroid precursor cells in embryos of Xenopus laevis , diploid-triploid chimeras were produced either by joining embryos antero-posteriorly or by orthotopic grafting of various tissues into N ieuwkoop -F aber st. 22–23 tailbud embryos. The sources of the hemopoietic cells were determined in the chimeric animals at various stages by microspectrophotometry of F eulgen -stained cells. Analyses of chimeras produced by joining embryos antero-posteriorly at different levels showed that the precursor cells that contribute to the hemopoietic cells are localized in the posterior half to three quarters. Orthotopic grafting of ventral or dorsal tissues revealed that the precursor cells that contribute to hemopoietic cells in early larvae are mostly localized in the ventral blood island (VBI) mesoderm, whereas those for late larvae and adults are localized both in the dorso-lateral plate (DLP) mesoderm comprising the prospective mesonephros and in the VBI mesoderm. Reciprocal heterotopic grafting of VBI- and DLP mesoderms showed that the two compartments differ in their capacities to differentiate into hemopoietic cells. It is proposed that the VBI-derived cells migrating towards the primary lymphoid organs constitute the transient hemopoietic population of early larvae, and the importance of the mesonephric region for definitive hemopoiesis is pointed out.  相似文献   

5.
The ventral blood islands (VBI) of Xenopus laevis embryos are known as the hemopoietic site where the initial erythropoiesis takes place at st. 28. To determine the site of postembryonic erythropoiesis, larvae were induced anemic by phenylhydrazine (PHZ) at st. 31 and 40, and the tissue distribution of regenerating erythrocytes was determined with an anti-larval hemoglobin (LHb) monoclonal antibody. Three days after total anemia induction, the LHb+cells were detected first in the liver and the digestive tract, followed by the appearance of a few LHb+cells in the blood vessels. The lavae which had been hepatectomized and cardiectomized before the PHZ treatment showed a remarkable reduction in recovery of the LHb+cells. Induction of anemia in the chimeric individuals containing cytogenetically labelled VBI tissues demonstrated that the VBI-derived cells contribute to the regenerating LHb+cells in all experimental individuals. These results suggest that the larval liver is the major site where the VBI-derived hemopoietic cells reside and differentiate into erythrocytes.  相似文献   

6.
Previous immunohistochemical observations using the monoclonal antibody (XL-1) which recognizes all types of leukocytes in Xenopus laevis revealed the occurrence of XL-1+ cells in the mesenchyme throughout the early larval body, before the appearance of any lymphocytes. The present experiments were performed to determine whether these leukocytes originate, like lymphocytes and red blood cells (RBCs), in the ventral blood islands (VBI) or the dorsolateral plate (DLP). For tracing the derivation of cells, a specific staining by quinacrine to nuclei of X. laevis and Xenopus borealis hybrid (LB) cells was used to distinguish them from X. laevis (LL) cells. Orthotopic graftings of VBI tissue from st.22-23 LB embryos to the stage-matched LL embryos and examinations at st.44-45 before differentiation of the lymphocytes showed that the proportion of XL-1+ LB cells was always significantly lower than that of RBCs with the same marker in all experimental larvae. The head (LB)-body (LL) chimeras from st.22-23 embryos and culture of the head-portions as VBI- and DLP-free explants from st.14-23 embryos both demonstrated that a significant number of XL-1+ cells which had originated in the head portions had begun to differentiate by st.42-43. These results indicate that there is a significant population of larval nonlymphoid leukocytes (mostly macrophages) that do not originate from either the VBI or DLP region, and are distributed in the mesenchyme throughout the body.  相似文献   

7.
The frequencies and potentialities of hematopoietic stem cells from 20-hr-old Xenopus embryos were examined by transplanting cytogenetically distinct ventral blood island tissue from diploid to triploid embryos. Thirty-five-day-old larvae were examined for the presence of donor-derived cells in their erythrocyte, thymocyte, and B lymphocyte populations by analyzing DNA content using flow cytometry. These experiments demonstrated that B lymphocytes, as well as erythrocytes and thymocytes, were derived from the ventral blood island. Data obtained by transplanting graded sized pieces of ventral blood island suggested that restricted erythroid precursors were present within the region by 20 hr postfertilization. Differentiation of both B- and T-lymphoid precursors from small pieces of ventral blood island was markedly enhanced when this tissue was grafted onto peripheral areas within the blood island region. Analysis of these data using repopulation statistics suggested that circulating larval erythrocytes of ventral blood island origin were derived from six or seven precursors. Each lobe of the thymus was colonized by three precursors, one of which was ventral blood island derived.  相似文献   

8.
Development of T lymphocytes in Xenopus laevis was studied using a mouse monoclonal antibody (mAb), XT-1, that was produced against surface determinants on thymocytes of J strain frog. Ontogenic studies, employing immunofluorescence, showed that cells positive for the determinant recognized by XT-1 mAb (XT-1+ cells) were first detected in the thymus of J strain Xenopus by Nieuwkoop and Faber stage 48 (7 days postfertilization) and then in the spleen, liver and kidney by stage 52 (20 days postfertilization). Percentages of XT-1+ cells in the thymus increased rapidly by stage 49 (10 days postfertilization) and reached adult levels by stage 52, and those in the spleen, liver, and kidney reached adult levels by stage 56 (40 days postfertilization). Electron microscopic immunohistochemistry revealed that most XT-1+ cells in thymuses from stage 56 larvae were typical small lymphocytes (4–7 μm in diameter). In contrast, many XT-1+ cells in larval thymuses at stage 49 are large (8–10 μm in diameter) lymphoblastoid cells. Thymectomy at stage 46 (5 days postfertilization) depleted XT-1+ cells in larval and adult lymphoid organs to background levels. These results suggest that the XT-1+ cells are differentiated from the lymphoid precursor cells in the thymus before the appearance of small lymphocytes and migrate into peripheral lymphoid organs. The cell surface determinant recognized by the XT-1 mAb may provide an important marker for the differentiation of T lymphocytes in Xenopus.  相似文献   

9.
Characterization of thymic progenitors in adult mouse bone marrow   总被引:5,自引:0,他引:5  
Thymic cellularity is maintained throughout life by progenitor cells originating in the bone marrow. In this study, we describe adult mouse bone cells that exhibit several features characteristic of prothymocytes. These include 1) rapid thymic engraftment kinetics following i.v. transplantation, 2) dramatic expansion of thymic progeny, and 3) limited production of hemopoietic progeny other than thymocytes. The adult mouse bone marrow population that is depleted of cells expressing any of a panel of lineage-specific Ags, stem cell Ag-1 positive, and not expressing the Thy1.1 Ag (Thy1.1(-)) (Thy1.1(-) progenitors) can repopulate the thymus 9 days more rapidly than can hemopoietic stem cells, a rate of thymic repopulation approaching that observed with transplanted thymocytes. Additionally, Thy1.1(-) progenitors expand prolifically to generate thymocyte progeny comparable in absolute numbers to those observed from parallel hemopoietic stem cell transplants, and provide a source of progenitors that spans multiple waves of thymic seeding. Nevertheless, the Thy1.1(-) population yields relatively few B cells and rare myeloid progeny posttransplant. These observations describe the phenotype of an adult mouse bone marrow population highly enriched for rapidly engrafting, long-term thymocyte progenitors. Furthermore, they note disparity in B and T cell expansion from this lymphoid progenitor population and suggest that it contains the progenitor primarily responsible for seeding the thymus throughout life.  相似文献   

10.
T cell development occurs in the thymus throughout life. Recent experimental findings show that the seeding of the thymus by multi-potent stem cells from the bone marrow is periodic rather than continuous, as previously assumed. However it is well known that the output rate of cells from the thymus is relatively constant. A quantitative model is used to verify the current hypotheses regarding T cell development in the steady state mouse thymus. The results show that the thymus could be at a periodic steady state with out-of-phase thymocyte populations. Experiments to examine possible periodic fluctuations in the thymus are proposed and methods for further analysis are outlined.  相似文献   

11.
Although it is well known that thymus function changes with age, it is not known whether these changes are associated with specific thymocyte populations. Since one criterion of specificity is cell size, we studied the size distribution of thymocytes from mice 0.5 days to 30.5 months of age. Body weight, thymus weight, and thymocyte yield were also measured. The mean cell volume of thymocytes from 8.5 to 13 week old mice was 326 μ3, with two detectable subpopulations. Mean thymocyte size was found to change with age. During the first postnatal week, the mean cell volume of the whole thymocyte population increased from 200 to 350 μ3, and the percentage of large cells increased greatly and constituted 90% of the whole population at four days of age. A rather slow decline in mean cell volume with some fluctuation occurred throughout the remaining life span, and at 30.5 months the mean had dropped to about 190 μ3. We suggest on the basis of these data that large thymocytes are involved in the contribution of the thymus to early postnatal development of the immune system and that the age-related functional capacity of the thymus is related to the size of the thymocyte population.  相似文献   

12.
Ontogeny and regulation of IL-7-expressing thymic epithelial cells   总被引:7,自引:0,他引:7  
Epithelial cells in the thymus produce IL-7, an essential cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We identified IL-7-expressing thymic epithelial cells (TECs) throughout ontogeny and in the adult mouse thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the early primordium by embryonic day 11.5 and is expressed in a Foxn1-independent pathway. Marked changes occur in the localization and regulation of IL-7-expressing TECs during development. IL-7-expressing TECs are present throughout the early thymic rudiment. In contrast, a major population of IL-7-expressing TECs is localized to the medulla in the adult thymus. Using mouse strains in which thymocyte development is arrested at various stages, we show that fetal and postnatal thymi differ in the frequency and localization of IL-7-expressing TECs. Whereas IL-7 expression is initiated independently of hemopoietic-derived signals during thymic organogenesis, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Moreover, different thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium, suggesting that despite phenotypic similarities, the cortical TEC compartments of wild-type and RAG-1(-/-) mice are developmentally and functionally distinct.  相似文献   

13.
Chen P  Ye H  Liu J H 《农业工程》2006,26(9):2801-2808
Annual monitoring of the population dynamics of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) using methyl eugenol-baited traps was conducted throughout the year during 1997, 2000, 2003 and 2004 in Ruili, Yunnan Province, China. Temperature, rainfall and host-plant species were analyzed with respect to population fluctuation of the fly. During the study periods the fruit fly occurred throughout the year. Its population remained low from November to January and increased steadily from February until it reached a peak in June. Afterwards, the population declined until October. The results of stepwise regression analysis indicated that monthly mean temperature, monthly mean maximum temperature, monthly mean minimum temperature, monthly extreme maximum temperature, monthly extreme minimum temperature, and monthly raining days were the major climatic factors influencing populations. Path and decision coefficient analyses indicated that the monthly mean temperature was the crucial factor influencing population fluctuation, the monthly mean minimum temperature was the crucial limiting factor indirectly influencing increase in population, and the comprehensive factors influencing fly population dynamics, namely, the monthly raining days were the strongest of all the other factors. Generally, the monthly mean temperatures fell within the ranges of temperatures suitable for development and reproduction of the fly. But the monthly mean minimum temperatures from November to January seemed to be lower and were suggested to be responsible for the low populations in this period. Monthly rainfall and rainy days steadily increased from February through June, and this explained the increase in population observed during this period. During periods of continuous heavy rain from July through August, the fruit fly population showed a remarkable decrease. Host plant species was another essential factor influencing the population fluctuations. Abundant fruit and melon species formed the food and breeding materials for the fly during the study periods.  相似文献   

14.
Delayed thymocyte maturation in the trisomy 16 mouse fetus   总被引:1,自引:0,他引:1  
Mouse fetuses with trisomy 16, an animal model for human trisomy 21 (Down syndrome), have severe defects in several hematopoietic stem cell populations and a marked reduction in thymocyte number. To determine whether there are other defects in the development of the trisomic thymus, the ontogeny of the cell surface antigenic determinants, Thy-1, Ly-1, CD3, CD4, CD8, and TCR v beta, was investigated. The trisomy 16 thymocytes were able to express all of determinants either during fetal life (days 14 to 19 of gestation) or in cultures of intact thymus lobes. However, in all instances (except for Thy-1, which already had a high proportion of expressing thymocytes by day 14), there was a delay in the time at which the determinants were first expressed, as manifested by reduced numbers of positively staining cells. Furthermore, there was also a delay in the rate at which the positively staining cells attained maximal Ag densities. Overall, there was an approximate 2 day lag in development of the fetal trisomic thymocytes. This lag permitted the identification of a large population of CD4-8+ cells prior to the appearance of CD4+8+ thymocytes. These findings are consistent with the identification of CD4-8+ as an intermediate stage between CD4-8- and CD4+8+ in fetal thymocyte ontogeny.  相似文献   

15.
The developing thymus in Xenopus was examined at four different levels: 1) precursor immigration of cytogenetically distinct embryonic stem cells; 2) waves of colonization during tadpole life and metamorphosis; 3) inter-thymic exchange of cells between separate lobes; and 4) development of cortical and medullary thymocytes. Based on the flow cytometric analysis of cytogenetically distinct thymocytes, there were at least two periods of stem cell immigration into the thymus, one during early larval life and the second before or during metamorphosis. Within the thymus, cohorts of cells derived from the first wave of immigration expanded at different times. The initial expansion occurred before 35 days of development. Cells involved in the second period of expansion were also derived from the initial immigrants, expanded after 35 days, and resulted in a turnover of thymocytes during the larval period. Precursor cells entering the thymus during metamorphosis expanded and resulted in an additional replacement of thymocytes. Cortical and medullary thymocytes were isolated from animals that received embryonic stem cell grafts. No differences in the presence or absence, or in the percentages, of donor thymocytes in these different fractions were observed. When limiting numbers of stem cells were transplanted, several cases of asymmetrical thymic lobe colonization were observed. These data suggested that an inter-thymic exchange of cells did not occur during larval life.  相似文献   

16.
The presence of haemopoietic stem cells (HSC) in the foetal mouse thymus was assessed to determine whether all cells which enter the developing organ are precommitted to thymocyte differentiation, or if stem cell multipotentiality still exists. The Till and McCulloch spleen colony assay was used to delineate foetal-thymus derived HSC in lethally irradiated recipients. Of the range examined, between 13 days of gestation to birth, a peak of stem cell activity occurs in 15-day foetal thymus. The surface colonies produced by the thymus-derived HSC are small compared to colonies produced by the liver derived HSC, although well within the range of the latter. Histologically, five types of colonies were identifiable which were produced by the thymus-derived HSC, indicating that these cells retain the potential to form a wide range of differentiated colonies.  相似文献   

17.
Annual monitoring of the population dynamics of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) using methyl eugenol-baited traps was conducted throughout the year during 1997, 2000, 2003 and 2004 in Ruili, Yunnan Province, China. Temperature, rainfall and host-plant species were analyzed with respect to population fluctuation of the fly. During the study periods the fruit fly occurred throughout the year. Its population remained low from November to January and increased steadily from February until it reached a peak in June. Afterwards, the population declined until October. The results of stepwise regression analysis indicated that monthly mean temperature, monthly mean maximum temperature, monthly mean minimum temperature, monthly extreme maximum temperature, monthly extreme minimum temperature, and monthly raining days were the major climatic factors influencing populations. Path and decision coefficient analyses indicated that the monthly mean temperature was the crucial factor influencing population fluctuation, the monthly mean minimum temperature was the crucial limiting factor indirectly influencing increase in population, and the comprehensive factors influencing fly population dynamics, namely, the monthly raining days were the strongest of all the other factors. Generally, the monthly mean temperatures fell within the ranges of temperatures suitable for development and reproduction of the fly. But the monthly mean minimum temperatures from November to January seemed to be lower and were suggested to be responsible for the low populations in this period. Monthly rainfall and rainy days steadily increased from February through June, and this explained the increase in population observed during this period. During periods of continuous heavy rain from July through August, the fruit fly population showed a remarkable decrease. Host plant species was another essential factor influencing the population fluctuations. Abundant fruit and melon species formed the food and breeding materials for the fly during the study periods.  相似文献   

18.
The effects of in vivo exposure to dexamethasone (DEX) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on thymocyte proliferation and thymocyte number were compared. In the thymus of DEX-treated mice (1 mg/kg) both proliferation and cell number had decreased by 70% one day after exposure. This decrease was, however, transient, and values returned to normal within 2 weeks. By contrast, in TCDD exposed mice (50 micrograms/kg), a reduction in proliferation was not observed until day 2 after exposure, and the degree of reduction was only about 50%. By this point in time, cell number had only decreased by 20%. Proliferation increased again on day 3 after TCDD administration, whereas cell number continued to decrease and remained low throughout the observation period (8 days). DEX had a direct and immediate effect on cells in all thymocyte subpopulations whereas TCDD initially only affected the immature double negative (DN) and double positive (DP) populations.  相似文献   

19.
Previously, we found that the conversion of hemoglobins (Hbs) from the larval to the adult type occurred within a single erythroid cell population in a salamander, Hynobius retardatus ("Hb switching" model), whereas the transition involves replacement of red-blood-cell (RBC) populations ("RBC replacement" model) in many amphibians (M. Yamaguchi, H. Takahashi, and M. Wakahara, 2000, Dev. Gene Evol. 210, 180-189). To further characterize the Hb transition, developmental changes in the erythropoietic sites have been intensively analyzed using larval- and adult-specific globin antibodies and globin and GATA-3 RNA probes. Cells of the ventral blood island (VBI) and the dorsolateral plate (DLP) in embryos differentiate in situ to erythroid cells that contain larval globin mRNA, suggesting that both the VBI and the DLP contribute to "primitive" erythropoiesis. In contrast, the expression pattern of the GATA-3 gene suggests that cells of the DLP may contribute to "definitive" hematopoiesis. In order to determine whether it is possible to define a definitive erythropoiesis in H. retardatus or not, further experiments were done: (1) when metamorphosing larvae were treated with phenylhydrazine to induce anemia and then bled at the postmetamorphic stage after recovery from the anemia, a precocious Hb transition was observed in these animals; (2) an RBC population expressing only adult Hb was confirmed by subtracting the number of RBCs expressing larval Hb from the total number of RBCs during metamorphosis. All these results support the existence of a definitive erythroid cell population that contributes only adult RBCs in this species.  相似文献   

20.
Using histochemical and immunocytochemical techniques, a lectin with nominal specificity for alpha-linked N-acetyl-D-galactosamine, Dolichos biflorus agglutinin (DBA), was found to preferentially label thymocytes with an L3T4-, Lyt-2- phenotype from fetal/newborn and adult mice. Through days 14 to 16 of gestation, virtually all thymocytes bound DBA, followed by a dramatic reduction of DBA labeling during the last 4 days of gestation, reaching adult levels of about 2 to 4% of total thymocytes. At later stages of fetal development, the DBA+ cells were confined to the subcapsular area of the thymus. This apparent loss of DBA+ cells was caused by an expansion of the thymocyte population not labeled with this lectin. Affinity purification of thymocyte cell surface components with insolubilized DBA indicated that virtually all of the lectin binding to fetal thymocytes was mediated by a 120-kDa glycoprotein. In addition to thymocytes, DBA also labeled about 5% of bone marrow cells from both normal or nude mice and a small population of spleen cells as well. These results suggest that this lectin may be useful to positively select for LT34-, Lyt-2- thymocytes, and, possibly, other immature populations within the T cell lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号