首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carboxyl group of the terminal N-acetylneuraminic acid residue of the glycopeptide, prepared from α1-acid glycoprotein by protease digestion, was esterified with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and then reduced with sodium borohydride. The reduced glycopeptide, thus prepared, containing the reduced N-acetylneuraminic acid, was resistant to hydrolysis by neuraminidase, and consequently to other exoglycosidases. The penultimate β-d-galactosyl residue of the oligosaccharide chain of the reduced glycopeptide was hydrolyzed by β-d-galactosidase only after the removal of the terminal, reduced, sialic acid by mild hydrolysis with acid. The reduced glycopeptide should be a useful substrate for the assay of endoglycosidases in the presence of exoenzymes. It should also find use as a carbon source in the growth of endoglycosidase-elaborating bacteria.  相似文献   

2.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with α-methylmannoside, constitute about 25–30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chrolide columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with α-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

3.
4-O-β-D-Galactopyranosyl-α,β-D-glucopyranosylamine (lactosylamine), β-D-gluco-, α- and β-D-manno-pyranosylamines were bound to the carbodiimide-activated groups of lysozyme. Of the 11 free carboxyl groups of the protein, ≈3 were substituted by α,β-6-lactosylamine, and ≈2 by the monohexo-sylamines. One of the 4 glycopeptides isolated from the tryptic digest of the lysozyme-lactosylamine conjugate was identical to synthetic l-N-L-leucinoyl-4-O-β-D-galactopyranosyl-β-D-glucopyranosylamine, indicating the substitution of the carboxyl group of the C-terminal leucine residue. The isolation of a glycopeptide containing the aspartic acid residue in position 117 indicates that the second α,β-lactosylamine residue is linked to the carboxyl group of this amino acid. Both of the 2 other glycopeptides contain the same free carboxyl groups (one glutamic and two aspartic acid residues in positions 35, 48, and 52, respectively). The third α,β-lactosylamine residue seems to be linked to one of these carboxyl groups.  相似文献   

4.
A bioactive peptide containing a glutamine-linked oligosaccharide was chemo-enzymatically synthesized by use of the solid-phase method of peptide synthesis and the transglycosylation activity of endo-β-N-acetylglucosaminidase. Substance P, a neuropeptide, is an undecapeptide containing two l-glutamine residues. A substance P derivative with an N-acetyl-d-glucosamine residue attached to the fifth or sixth l-glutamine residue from the N-terminal region was chemically synthesized. A sialo complex-type oligosaccharide derived from a glycopeptide of hen egg yolk was added to the N-acetyl-d-glucosamine moiety of the substance P derivative using the transglycosylation activity of endo-β-N-acetylglucosaminidase from Mucor hiemalis, and a substance P derivative with a sialo complex-type oligosaccharide attached to the l-glutamine residue was synthesized. This glycosylated substance P was biologically active, although the activity was rather low, and stable against peptidase digestion. The oligosaccharide moiety attached to the l-glutamine residue of the peptide was not liberated by peptide-N4-(N-acetyl-β-d-glucosaminyl) asparagine amidase F.  相似文献   

5.
Water-soluble and non-dialyzable glycopeptide, nephritogenoside, was isolated from the glomerular basement membrane of normal rats. The yield of the purified nephritogenic glycopeptide from the glomerular basement membrane of 1200 rats was only 17.2 mg. Hexose amounted to 24.3% by weight, and consisted only of glucose. Paper chromatographic studies on the number and length of the carbohydrate chain deduced from strong alkaline cleavage in the presence of sodium borohydride strongly suggested that the carbohydrate chain of the nephritogenic glycopeptide is composed of three glucose residues. This conclusion was supported by the 13C-NMR spectroscopic results. In the paper chromatographic studies on the monosaccharides produced from 3H-labeled oligosaccharide by alkaline degradation and then acid hydrolysis and studies on the 13C-NMR spectrum, it was demonstrated that the saccharide at the reducing terminus is glucose. Thus, the glucose residue at the reducing terminus of the nephritogenoside may be linked directly (probably N-glycosidically) to amino acid, without the intervention of N-acetylglucosamine. The proposed structure of the carbohydrate portion of the nephritogenic glycopeptide, nephritogenoside, is as follows:
  相似文献   

6.
A sialoglycopeptide was isolated from buffalo colostrum in pure form by chromatography on Sephadex G-25 and QAE-Sephadex A-25. This was found to be homogeneous by cellulose acetate membrane electrophoresis and reverse phase HPLC. It consisted of fucose, galactose, mannose,N-acetyl glucosamine andN-acetyl neuraminic acid in the ratio 12341, and aspartic acid, serine, threonine, proline and glutamic acid were the major amino acids. Glycine was identified as the N-terminal amino acid residue. The structure elucidation of the carbohydrate moiety was carried out by methylation analysis, mass spectrometry,1H-NMR spectroscopy and the probable structure was revealed to be that of a complex biantennary type.  相似文献   

7.
We previously showed that galectin-9 suppresses degranulation of mast cells through protein-glycan interaction with IgE. To elucidate the mechanism of the interaction in detail, we focused on identification and structural analysis of IgE glycans responsible for the galectin-9-induced suppression using mouse monoclonal IgE (TIB-141). TIB-141 in combination with the antigen induced degranulation of RBL-2H3 cells, which was almost completely inhibited by human and mouse galectin-9. Sequential digestion of TIB-141 with lysyl endopeptidase and trypsin resulted in the identification of a glycopeptide (H-Lys13-Try3; 48 amino acid residues) with a single N-linked oligosaccharide near the N terminus capable of neutralizing the effect of galectin-9 and another glycopeptide with two N-linked oligosaccharides (H-Lys13-Try1; 16 amino acid residues) having lower activity. Enzymatic elimination of the oligosaccharide chain from H-Lys13-Try3 and H-Lys13-Try1 completely abolished the activity. Removal of the C-terminal 38 amino acid residues of H-Lys13-Try3 with glutamyl endopeptidase, however, also resulted in loss of the activity. We determined the structures of N-linked oligosaccharides of H-Lys13-Try1. The galectin-9-binding fraction of pyridylaminated oligosaccharides contained asialo- and monosialylated bi/tri-antennary complex type oligosaccharides with a core fucose residue. The structures of the oligosaccharides were consistent with the sugar-binding specificity of galectin-9, whereas the nonbinding fraction contained monosialylated and disialylated biantennary complex type oligosaccharides with a core fucose residue. Although the oligosaccharides linked to H-Lys13-Try3 could not be fully characterized, these results indicate the possibility that cooperative binding of oligosaccharide and neighboring polypeptide structures of TIB-141 to galectin-9 affects the overall affinity and specificity of the IgE-lectin interaction.  相似文献   

8.
The Cuvierian tubules of Holothuria forskali Della Chiaje, a sea cucumber found in the Adriatic Sea, were investigated with regard to their carbohydrate moieties. From a Pronase digest of these tubules three types of carbohydrate units were isolated and characterized. 1. A high-molecular-weight glycopeptide fraction was shown to contain sulphated polyfucose, galactosamine, a uronic acid and a previously unknown neuraminic acid derivative. The sulphate was shown by i.r. analysis to be present as an O-ester. The carbohydrate unit was linked O-glycosidically to threonine and serine residues in the polypeptide chain. The hitherto unknown neuraminic acid derivative (Hf-neuraminic acid) was resistant to enzymic cleavage by neuraminidase, even after mild alkaline hydrolysis for the removal of O-acyl residues. However, the glycosidic linkage of this compound to the other part of the carbohydrate moiety was readily cleaved by mild acid hydrolysis. Its chromatographic properties distinguished Hf-neuraminic acid from other known neuraminic acid derivatives (N-acetyl-, NO-diacetyl-, NOO-triacetyl- and N-glycollyl-neuraminic acid). Further, this acidic sugar was shown to possess neuraminic acid as its basic structure. Thus, an as yet unknown substituent lends the distinct properties to Hf-neuraminic acid. 2. The carbohydrate composition of a second glycopeptide fraction consisting of a derivative of neuraminic acid, galactose, mannose and glucosamine was similar to that of the well-known carbohydrate groups of the globular glycoproteins. 3. The third fraction contained two glycopeptides containing the disaccharide, glucosylgalactose, which was shown to be linked to the hydroxyl group of hydroxylysine residues of a collagen-like protein. Approximately half of these residues were glycosylated. In addition to these glycopeptides, a small amount of a third glycopeptide that carried only a galactosyl residue was detected. The amino acid sequence of the two major compounds were found to be Gly-Ala-Hyl*-Gly-Ser and Gly-Pro-Hyl*-Gly-Asp, where Hyl* represents a glycosylated amino acid residue.  相似文献   

9.
Pepsin reacts stoicheiometrically with the active-site-directed irreversible inhibitor N-diazoacetyl-l-phenylalanine methyl ester, with concomitant loss of all proteolytic and peptidolytic activity. The reagent esterifies a unique aspartic acid residue in pepsin, which is in the sequence:Ile-Val-Asp-Thr-Gly-Thr-Ser  相似文献   

10.
The ability of the calcium ionophore A23187 and the sodium ionophore Monensin to antagonize the inhibition of 3T3 cell protein synthesis by a bovine cell surface sialoglycopeptide was measured. A23187, when added before and shortly after the sialoglycopeptide, significantly reduced the biological activity of the inhibitory glycopeptide. In contrast, Monensin had little, if any, influence on protein synthesis inhibition by the sialoglycopeptide. The ability of A23187 to circumvent the inhibitory action of the bovine glycopeptide was shown to be independent of the time the ionophore was incubated with the cells and the binding of the sialoglycopeptide to the 3T3 target cells. Neither the total amount of sialoglycopeptide bound to the cells, nor its affinity to the cell surface receptor, was influenced by the presence of A23187.  相似文献   

11.
Studies on a glycopeptide from ovalbumin   总被引:1,自引:1,他引:0  
1. The structure of the carbohydrate component of the glycopeptide isolated from the proteolytic digest of ovalbumin has been investigated by chemical and enzymic methods. 2. The results are consistent with the presence of a single carbohydrate prosthetic group, linked through its reducing end group to the peptide chain. 3. Further, all the 2-amino-2-deoxy-d-glucose units appear to be in the N-acylated form, the phenolic hydroxyl group of tyrosine is free and the ω-carboxyl group of aspartic acid is substituted. 4. The carbohydrate component has a branched-chain structure, the two non-reducing ends being terminated by a d-mannopyranosyl and a 2-acetamido-2-deoxy-d-glucopyranosyl residue respectively. 5. The terminal d-mannopyranosyl unit is probably linked through at least one other d-mannopyranosyl residue to the remainder of the carbohydrate.  相似文献   

12.
A novel carbohydrate-rich sialoglycopeptide of apparent molecularmass $$$6 kDa was isolated from the fertilized eggs of Fundulusheteroclitus (euryhaline killi fish). This glycopeptide is amember of the L-hyosophorin family, characterized by its highcontent of carbohydrate (80–90% by weight) and formedby depolymerization of the precursor glycopolyprotein (H-hyosophorin)upon fertilization. The structures of the N-glycan chains wereunambiguously established by a combination of compositionalanalysis, methylation analysis, selective chemical degradation(periodate oxidation-Smith degradation and hydrazinolysis-nitrousacid deamination), enzymatic (peptide:N-g]ycosidase F, severalß-galactosidases, (ß-hexosaminidase and  相似文献   

13.
Two glycopeptide fractions in a pronase digest of rabbit pulmonary angiotensin-converting enzyme were resolved by gel filtration. GP-I, the minor component (~1 mole/mol enzyme) contained mannose, galactose, glucose N-acetylglucosamine, N-acetylgalactosamine and sialic acid in an approximate molar ratio of 1:5:3:4:1:2 and molar equivalents of aspartic acid, threonine and serine. GP-II, the major oligosaccharide unit (~ 12 moles/mol enzyme, ~ 90% of total carbohydrate), contained fucose, mannose, galactose, N-acetylglucosamine, sialic acid and aspartic acid in a molar ratio of 1:4:4:4:1:1. Although accounting for about one-quarter of the weight of the enzyme, GP-II did not compete with the intact glycoprotein for binding to goat antienzyme antibodies. Some structural features of GP-II were deduced by periodate oxidation and digestion with various glycosidases.  相似文献   

14.
The three-dimensional structure of hevamine, a plant enzyme with chitinase and lysozyme activity, has been refined at 1.8 Å resolution to an R-factor of 14.9% and a freeR-factor of 19.6%. The final model consists of all 273 amino acid residues and 206 ordered water molecules. Two non-prolinecis-peptides were identified, involving Phe32 and Trp255, both of which are implicated in substrate binding.Other glycosyl hydrolase family 18 proteins with known three-dimen sional structure are bacterial chitinase A, endo-β-N-acetylglucosaminidase F1, endo-β-N-acetylglucosaminidase H, and the two plant proteins concanavalin B and narbonin, which have no known enzymatic activity. All these structures contain a (βα)8barrel fold, with the two family 18 consensus regions roughly corresponding to the third and fourth barrel strands. This confirms the grouping of these proteins into family 18, which was only based on weak and local sequence similarity. The substrate specificity of the enzymes is determined by the loops following the barrel strands that form the substrate binding site. All enzymes have an aspartic acid and a glutamic acid residue in positions identical with Asp 125 and the catalytic Glu127 of hevamine. The lack of chitinase activity of concanavalin B and narbonin can be explained by the absence of one of these carboxylate groups, and by differences in the loops that form the substrate-binding cleft in hevamine.  相似文献   

15.
A tuberculin-active glycopeptide containing eight different amino acids and glucose was isolated from the protoplasm of Mycobacterium tuberculosis. A molecular weight of 4,000 to 5,000 was established by Sephadex gel filtration; other analyses showed a peptide to carbohydrate ratio of 9:1. These observations suggest a tentative composition of 3 to 4 residues of glucose, 12 residues each of aspartic and glutamic acids, 3 residues each of lysine, glycine, and serine, and 1 residue each of arginine, threonine, and alanine.  相似文献   

16.
Sequence analysis of membrane-bound glycerolipid acyltransferases revealed that proteins from the bacterial, plant, and animal kingdoms share a highly conserved domain containing invariant histidine and aspartic acid residues separated by four less conserved residues in an HX4D configuration. We investigated the role of the invariant histidine residue in acyltransferase catalysis by site-directed mutagenesis of two representative members of this family, the sn-glycerol-3-phosphate acyltransferase (PlsB) and the bifunctional 2-acyl-glycerophosphoethanolamine acyltransferase/acyl-acyl carrier protein synthetase (Aas) of Escherichia coli. Both the PlsB[H306A] and Aas[H36A] mutants lacked acyltransferase activity. However, the Aas[H36A] mutant retained significant acyl-acyl carrier protein synthetase activity, illustrating that the lack of acyltransferase activity was specifically associated with the H36A substitution. The invariant aspartic acid residue in the HX4D pattern was also important. The substitution of aspartic acid 311 with glutamic acid in PlsB resulted in an enzyme with significantly reduced catalytic activity. Substitution of an alanine at this position eliminated acyltransferase activity; however, the PlsB[D311A] mutant protein did not assemble into the membrane, indicating that aspartic acid 311 is also important for the proper folding and membrane insertion of the acyltransferases. These data are consistent with a mechanism for glycerolipid acyltransferase catalysis where the invariant histidine functions as a general base to deprotonate the hydroxyl moiety of the acyl acceptor.  相似文献   

17.
A sialoglycopeptide from bovine cerebral cortex cells was purified to apparent homogeneity by a procedure that included chloroform/methanol extraction, diethylaminoethyl ion exchange chromatography, wheat germ agglutinin affinity chromatography, size-exclusion HPLC, and hydrophobic interaction chromatography. The cell surface inhibitor had a molecular weight of approximately 18,000, no subunit composition was detectable on reduction and polyacrylamide gel electrophoresis analysis, and the glycopeptide apparently contained sialic acid, as illustrated by its ability to bind to Limulus polyhemus lectin. Deglycosylation of the molecule, however, did not reduce its protein synthesis inhibitory activity. As little as 20 ng of the sialoglycopeptide was capable of inhibiting protein synthesis in a wide variety of fibroblast cell lines but not in transformed cells. Mice immunized with the sialoglycopeptide produced antibodies that, when bound to protein A-agarose gel, removed the inhibitory activity from solution. The antibodies were used to identify a single isoelectric focused band and to establish the pI of 3.0 for the molecule.  相似文献   

18.
Characterization of lamprey fibrinopeptides   总被引:9,自引:1,他引:8       下载免费PDF全文
1. Lamprey fibrinopeptide B is a relatively large peptide made up of about 40 amino acid residues. The peptide is highly electronegative, containing a large number of aspartic acid residues and a tyrosine O-sulphate residue. 2. The amino acid sequence of the first 18 residues from the N-terminal end of fibrinopeptide B has been established. The C-terminal ends with the sequence Val-Arg. Fibrino-peptide B is released by both lamprey and bovine thrombins. 3. Lamprey fibrino-peptide A is a short peptide containing only eight residues. The proposed amino acid sequence is: Asp-Asp-Ser-Ile/Leu-Asp-Ser-Leu/Ile-ArgThis peptide is released by lamprey thrombin but not by bovine thrombin.  相似文献   

19.
A chlorophyll-a derivative bonded directly with epoxide at the peripheral position of the chlorin π-system was reacted with N-urethane and C-ester protected amino acids bearing an alcoholic or phenolic hydroxy group as well as a carboxy group at the residue to give chlorophyll–amino acid conjugates. The carboxy residues of N,C-protected aspartic and glutamic acids were esterified with the epoxide in high yields. The synthetic conjugates in dichloromethane had absorption bands throughout the visible region including intense red-side Qy and blue-side Soret bands. By their excitation at the visible bands, strong and efficient fluorescence emission was observed up to the near-infrared region. The chromo/fluorophores are promising for preparation of functional peptides and modification of proteins.  相似文献   

20.
Endo-M, endo-β-N-acetylglucosaminidase from Mucor hiemalis, transferred the complex type oligosaccharide of sialoglycopeptide to partially deglycosylated proteins (N-acetylglucosamine-attached proteins), which were prepared by excluding high-mannose type oligosaccharides from glycoproteins with Endo-H, endo-β-N-acetylglucosaminidase from Streptomyces plicatus. This finding indicated that the high-mannose type oligosaccharides on glycoproteins can be changed to complex type ones by the transglycosylation activity of Endo-M. This is the first report of the establishment of a remodeling system for the different types of oligosaccharides on glycoproteins with microbial endo-β-N-acetylglucosaminidases having different substrate specificities. Endo-M is a powerful tool for the in vitro synthesis of glycoproteins containing complex type oligosaccharides from glycoproteins produced by yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号